Suppr超能文献

整合代谢组学和转录组学分析揭示骨肉瘤和正常成骨细胞之间糖酵解过程的差异。

Integrative metabolome and transcriptome profiling reveals discordant glycolysis process between osteosarcoma and normal osteoblastic cells.

机构信息

Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.

出版信息

J Cancer Res Clin Oncol. 2014 Oct;140(10):1715-21. doi: 10.1007/s00432-014-1719-y. Epub 2014 Jun 12.

Abstract

BACKGROUND

Osteosarcoma (OS) is the most common primary malignant tumor of bone in children and adolescents. However, few biomarkers of diagnostic significance have been established. In recent years, high-throughput transcriptomic and metabolomic approaches make it possible for studying the levels of thousands of biomarkers simultaneously.

METHODS

In this study, we integrated two disparate transcriptomic and metabolomic datasets to find meaningful biomarkers and then used an independent dataset to test the sensibility and specificity of these biomarkers.

RESULTS

By using integrated two datasets, we discovered that the biomarkers involved in the glycolysis pathway are highly enriched, including 4 genes (ENO1, TPI1, PKG1 and LDHC) and 2 metabolites (lactate and pyruvate). The 4 genes were significantly down-regulated in OS samples as well as the 2 metabolites. The mixed metabolites + genes signature also outperformed metabolites or genes alone, with recall being 0.813 and F-measure being 0.812. And the AUC value of metabolites + genes classifier was 0.825 (compared to 0.58 for metabolites and 0.821 for genes alone).

CONCLUSION

Our findings establish that integrated transcriptomic and metabolomic signature can be used to distinguish OS malignant with good diagnostic accuracy superior to other methods.

摘要

背景

骨肉瘤(OS)是儿童和青少年中最常见的原发性骨恶性肿瘤。然而,尚未建立具有诊断意义的生物标志物。近年来,高通量转录组学和代谢组学方法使得同时研究数千种生物标志物的水平成为可能。

方法

在本研究中,我们整合了两个不同的转录组学和代谢组学数据集,以寻找有意义的生物标志物,然后使用独立数据集来测试这些生物标志物的敏感性和特异性。

结果

通过整合两个数据集,我们发现糖酵解途径中的生物标志物高度丰富,包括 4 个基因(ENO1、TPI1、PKG1 和 LDHC)和 2 种代谢物(乳酸和丙酮酸)。这 4 个基因在 OS 样本中以及这 2 种代谢物均显著下调。混合代谢物+基因特征的表现也优于单独的代谢物或基因,召回率为 0.813,F 测度为 0.812。代谢物+基因分类器的 AUC 值为 0.825(相比之下,代谢物为 0.58,基因单独为 0.821)。

结论

我们的发现表明,整合转录组学和代谢组学特征可用于区分 OS 恶性肿瘤,具有优于其他方法的良好诊断准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验