Suppr超能文献

在缺氧/好氧工艺中使用基于模糊神经网络的控制系统提高氮去除率。

Improving nitrogen removal using a fuzzy neural network-based control system in the anoxic/oxic process.

作者信息

Huang Mingzhi, Ma Yongwen, Wan Jinquan, Wang Yan, Chen Yangmei, Yoo Changkyoo

机构信息

Department of Water Resources and Environment, Sun Yat-sen University, Guangzhou, 510275, China,

出版信息

Environ Sci Pollut Res Int. 2014 Oct;21(20):12074-84. doi: 10.1007/s11356-014-3092-4. Epub 2014 Jun 13.

Abstract

Due to the inherent complexity, uncertainty, and posterity in operating a biological wastewater treatment process, it is difficult to control nitrogen removal in the biological wastewater treatment process. In order to cope with this problem and perform a cost-effective operation, an integrated neural-fuzzy control system including a fuzzy neural network (FNN) predicted model for forecasting the nitrate concentration of the last anoxic zone and a FNN controller were developed to control the nitrate recirculation flow and realize nitrogen removal in an anoxic/oxic (A/O) process. In order to improve the network performance, a self-learning ability embedded in the FNN model was emphasized for improving the rule extraction performance. The results indicate that reasonable forecasting and control performances had been achieved through the developed control system. The effluent COD, TN, and the operation cost were reduced by about 14, 10.5, and 17 %, respectively.

摘要

由于生物废水处理过程操作中存在固有的复杂性、不确定性和滞后性,生物废水处理过程中的氮去除难以控制。为了解决这个问题并实现具有成本效益的运行,开发了一种集成神经模糊控制系统,该系统包括用于预测最后一个缺氧区硝酸盐浓度的模糊神经网络(FNN)预测模型和一个FNN控制器,以控制硝酸盐回流流量并在缺氧/好氧(A/O)工艺中实现氮去除。为了提高网络性能,强调了FNN模型中嵌入的自学习能力以提高规则提取性能。结果表明,通过所开发的控制系统已实现了合理的预测和控制性能。出水化学需氧量(COD)、总氮(TN)和运行成本分别降低了约14%、10.5%和17%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验