Department of Clinical and Molecular Cardiovascular Research, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan.
Department of Clinical and Molecular Cardiovascular Research, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan.
EMBO J. 2014 Jul 17;33(14):1565-81. doi: 10.15252/embj.201387605. Epub 2014 Jun 11.
Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming.
成纤维细胞可以通过过表达心脏转录因子或 microRNAs 直接重编程为心肌细胞样细胞(iCMs)。然而,诱导功能性心肌细胞的效率很低,并且直接重编程的分子机制仍未定义。在这里,我们证明了添加 miR-133a(miR-133)到 Gata4、Mef2c 和 Tbx5(GMT)或 GMT 加 Mesp1 和 Myocd 中,可以通过直接抑制上皮-间质转化的主调控因子 Snai1,提高从小鼠或人成纤维细胞的心脏重编程效率。与 GMT 相比,GMT 加 miR-133 的表达可使从小鼠胚胎成纤维细胞产生的搏动性 iCMs 增加七倍,并将诱导搏动细胞的时间从 30 天缩短至 10 天。Snai1 的敲低抑制了成纤维细胞基因,上调了心脏基因表达,并诱导了更多具有 GMT 转导的收缩性 iCMs,重现了 miR-133 过表达的效果。相比之下,在 GMT/miR-133 转导的细胞中过表达 Snai1 则维持了成纤维细胞特征,并抑制了搏动性 iCMs 的产生。miR-133 介导的 Snai1 抑制在成年小鼠和人心脏成纤维细胞的心脏重编程中也至关重要。因此,通过 miR-133/Snai1 介导的成纤维细胞特征沉默是心脏重编程过程中的一个关键分子障碍。