Suppr超能文献

miR-133 通过直接抑制 Snai1 并沉默成纤维细胞特征来促进心脏重编程。

MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.

机构信息

Department of Clinical and Molecular Cardiovascular Research, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan.

Department of Clinical and Molecular Cardiovascular Research, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan.

出版信息

EMBO J. 2014 Jul 17;33(14):1565-81. doi: 10.15252/embj.201387605. Epub 2014 Jun 11.

Abstract

Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming.

摘要

成纤维细胞可以通过过表达心脏转录因子或 microRNAs 直接重编程为心肌细胞样细胞(iCMs)。然而,诱导功能性心肌细胞的效率很低,并且直接重编程的分子机制仍未定义。在这里,我们证明了添加 miR-133a(miR-133)到 Gata4、Mef2c 和 Tbx5(GMT)或 GMT 加 Mesp1 和 Myocd 中,可以通过直接抑制上皮-间质转化的主调控因子 Snai1,提高从小鼠或人成纤维细胞的心脏重编程效率。与 GMT 相比,GMT 加 miR-133 的表达可使从小鼠胚胎成纤维细胞产生的搏动性 iCMs 增加七倍,并将诱导搏动细胞的时间从 30 天缩短至 10 天。Snai1 的敲低抑制了成纤维细胞基因,上调了心脏基因表达,并诱导了更多具有 GMT 转导的收缩性 iCMs,重现了 miR-133 过表达的效果。相比之下,在 GMT/miR-133 转导的细胞中过表达 Snai1 则维持了成纤维细胞特征,并抑制了搏动性 iCMs 的产生。miR-133 介导的 Snai1 抑制在成年小鼠和人心脏成纤维细胞的心脏重编程中也至关重要。因此,通过 miR-133/Snai1 介导的成纤维细胞特征沉默是心脏重编程过程中的一个关键分子障碍。

相似文献

1
MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.
EMBO J. 2014 Jul 17;33(14):1565-81. doi: 10.15252/embj.201387605. Epub 2014 Jun 11.
3
Induction of human cardiomyocyte-like cells from fibroblasts by defined factors.
Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12667-72. doi: 10.1073/pnas.1304053110. Epub 2013 Jul 16.
4
Enhanced Generation of Induced Cardiomyocytes Using a Small-Molecule Cocktail to Overcome Barriers to Cardiac Cellular Reprogramming.
J Am Heart Assoc. 2020 Jun 16;9(12):e015686. doi: 10.1161/JAHA.119.015686. Epub 2020 Jun 5.
5
Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro.
Nat Protoc. 2013 Jun;8(6):1204-15. doi: 10.1038/nprot.2013.067. Epub 2013 May 30.
6
Direct In Vivo Reprogramming with Sendai Virus Vectors Improves Cardiac Function after Myocardial Infarction.
Cell Stem Cell. 2018 Jan 4;22(1):91-103.e5. doi: 10.1016/j.stem.2017.11.010. Epub 2017 Dec 21.
8
Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success.
J Mol Cell Cardiol. 2013 Jul;60:97-106. doi: 10.1016/j.yjmcc.2013.04.004. Epub 2013 Apr 13.
9
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes.
Nature. 2012 May 31;485(7400):593-8. doi: 10.1038/nature11044.
10
Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5.
Circ Res. 2012 Jun 22;111(1):50-5. doi: 10.1161/CIRCRESAHA.112.270264. Epub 2012 May 10.

引用本文的文献

1
Direct fibroblast reprogramming: an emerging strategy for treating organic fibrosis.
J Transl Med. 2025 Feb 27;23(1):240. doi: 10.1186/s12967-024-06060-3.
2
Direct cardiac reprogramming via combined CRISPRa-mediated endogenous Gata4 activation and exogenous Mef2c and Tbx5 expression.
Mol Ther Nucleic Acids. 2024 Nov 15;35(4):102390. doi: 10.1016/j.omtn.2024.102390. eCollection 2024 Dec 10.
4
Potential diagnostic value of circulating miRNAs in HFrEF and bioinformatics analysis.
Heliyon. 2024 Sep 20;10(19):e37929. doi: 10.1016/j.heliyon.2024.e37929. eCollection 2024 Oct 15.
5
FGF4 and ascorbic acid enhance the maturation of induced cardiomyocytes by activating JAK2-STAT3 signaling.
Exp Mol Med. 2024 Oct;56(10):2231-2245. doi: 10.1038/s12276-024-01321-z. Epub 2024 Oct 1.
6
Direct Cardiac Reprogramming in the Age of Computational Biology.
J Cardiovasc Dev Dis. 2024 Sep 4;11(9):273. doi: 10.3390/jcdd11090273.
8
Recent advances and future prospects in direct cardiac reprogramming.
Nat Cardiovasc Res. 2023 Dec;2(12):1148-1158. doi: 10.1038/s44161-023-00377-w. Epub 2023 Dec 11.
10

本文引用的文献

1
Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state.
Stem Cell Reports. 2013 Aug 22;1(3):235-47. doi: 10.1016/j.stemcr.2013.07.005. eCollection 2013.
2
Direct reprogramming of fibroblasts into myocytes to reverse fibrosis.
Annu Rev Physiol. 2014;76:21-37. doi: 10.1146/annurev-physiol-021113-170301. Epub 2013 Sep 20.
3
Induction of human cardiomyocyte-like cells from fibroblasts by defined factors.
Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12667-72. doi: 10.1073/pnas.1304053110. Epub 2013 Jul 16.
5
Reprogramming of human fibroblasts toward a cardiac fate.
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5588-93. doi: 10.1073/pnas.1301019110. Epub 2013 Mar 4.
6
Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5.
Circ Res. 2012 Oct 12;111(9):1147-56. doi: 10.1161/CIRCRESAHA.112.271148. Epub 2012 Aug 28.
7
Critical factors for cardiac reprogramming.
Circ Res. 2012 Jun 22;111(1):5-8. doi: 10.1161/CIRCRESAHA.112.271452.
8
Heart repair by reprogramming non-myocytes with cardiac transcription factors.
Nature. 2012 May 13;485(7400):599-604. doi: 10.1038/nature11139.
9
Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5.
Circ Res. 2012 Jun 22;111(1):50-5. doi: 10.1161/CIRCRESAHA.112.270264. Epub 2012 May 10.
10
A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells.
J Mol Cell Cardiol. 2012 Sep;53(3):323-32. doi: 10.1016/j.yjmcc.2012.04.010. Epub 2012 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验