Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
Department of Physiology and Pharmacology, and Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA.
J Mol Cell Cardiol. 2024 Nov;196:52-70. doi: 10.1016/j.yjmcc.2024.08.007. Epub 2024 Sep 1.
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are advancing cardiovascular development and disease modeling, drug testing, and regenerative therapies. However, hPSC-CM production is hindered by significant variability in the differentiation process. Establishment of early quality markers to monitor lineage progression and predict terminal differentiation outcomes would address this robustness and reproducibility roadblock in hPSC-CM production. An integrated transcriptomic and epigenomic analysis assesses how attributes of the cardiac progenitor cell (CPC) affect CM differentiation outcome. Resulting analysis identifies predictive markers of CPCs that give rise to high purity CM batches, including TTN, TRIM55, DGKI, MEF2C, MAB21L2, MYL7, LDB3, SLC7A11, and CALD1. Predictive models developed from these genes provide high accuracy in determining terminal CM purities at the CPC stage. Further, insights into mechanisms of batch failure and dominant non-CM cell types generated in failed batches are elucidated. Namely EMT, MAPK, and WNT signaling emerge as significant drivers of batch divergence, giving rise to off-target populations of fibroblasts/mural cells, skeletal myocytes, epicardial cells, and a non-CPC SLC7A11+ subpopulation. This study demonstrates how integrated multi-omic analysis of progenitor cells can identify quality attributes of that progenitor and predict differentiation outcomes, thereby improving differentiation protocols and increasing process robustness.
人多能干细胞衍生的心肌细胞(hPSC-CMs)正在推动心血管发育和疾病建模、药物测试和再生疗法的发展。然而,hPSC-CM 的生产受到分化过程中显著变异性的阻碍。建立早期质量标志物来监测谱系进展并预测终末分化结果将解决 hPSC-CM 生产中的这种稳健性和可重复性障碍。综合转录组和表观基因组分析评估了心脏祖细胞(CPC)的属性如何影响 CM 分化结果。由此产生的分析确定了预测 CPC 的标志物,这些标志物产生高纯度的 CM 批次,包括 TTN、TRIM55、DGKI、MEF2C、MAB21L2、MYL7、LDB3、SLC7A11 和 CALD1。这些基因开发的预测模型在 CPC 阶段确定终末 CM 纯度具有很高的准确性。此外,还阐明了导致批次失败的机制以及在失败批次中产生的主要非 CM 细胞类型。即 EMT、MAPK 和 WNT 信号转导成为批次离散的重要驱动因素,产生了成纤维细胞/壁细胞、骨骼肌细胞、心外膜细胞和非 CPC SLC7A11+亚群等靶外群体。这项研究表明,如何对祖细胞进行综合多组学分析可以确定该祖细胞的质量属性并预测分化结果,从而改进分化方案并提高过程稳健性。