Suppr超能文献

轴向驻波照明频域成像(SWIF)。

Axial standing-wave illumination frequency-domain imaging (SWIF).

作者信息

Judkewitz Benjamin, Yang Changhuei

出版信息

Opt Express. 2014 May 5;22(9):11001-10. doi: 10.1364/OE.22.011001.

Abstract

Despite their tremendous contribution to biomedical research and diagnosis, conventional spatial sampling techniques such as wide-field, point scanning or selective plane illumination microscopy face inherent limiting trade-offs between spatial resolution, field-of-view, phototoxicity and recording speed. Several of these trade-offs are the result of spatial sampling with diffracting beams. Here, we introduce a new strategy for fluorescence imaging, SWIF, which instead encodes the axial profile of a sample in the Fourier domain. We demonstrate how this can be achieved with propagation-invariant illumination patterns that extend over several millimeters and robustly propagate through layers of varying refractive index. This enabled us to image a lateral field-of-view of 0.8 mm x 1.5 mm with an axial resolution of 2.4 µm - greatly exceeding the lateral field-of-view of conventional illumination techniques (~100 µm) at comparable resolution. Thus, SWIF allowed us to surpass the limitations of diffracting illumination beams and untangle lateral field-of-view from resolution.

摘要

尽管传统的空间采样技术,如宽视场、点扫描或选择性平面照明显微镜在生物医学研究和诊断中做出了巨大贡献,但它们在空间分辨率、视野、光毒性和记录速度之间面临着固有的限制权衡。其中一些权衡是由衍射光束的空间采样导致的。在这里,我们介绍了一种新的荧光成像策略——SWIF,它在傅里叶域中对样品的轴向轮廓进行编码。我们展示了如何通过延伸数毫米并能在不同折射率层中稳健传播的传播不变照明模式来实现这一点。这使我们能够以2.4 µm的轴向分辨率对0.8 mm x 1.5 mm的横向视野进行成像,大大超过了传统照明技术在可比分辨率下的横向视野(约100 µm)。因此,SWIF使我们能够超越衍射照明光束的限制,并将横向视野与分辨率区分开来。

相似文献

1
Axial standing-wave illumination frequency-domain imaging (SWIF).
Opt Express. 2014 May 5;22(9):11001-10. doi: 10.1364/OE.22.011001.
5
Parallelized STED fluorescence nanoscopy.
Opt Express. 2011 Nov 21;19(24):23716-26. doi: 10.1364/OE.19.023716.
7
Polarization conversion in confocal microscopy with radially polarized illumination.
Opt Lett. 2009 Jul 15;34(14):2147-9. doi: 10.1364/OL.34.002147.
8
Resolution in the ApoTome and the confocal laser scanning microscope: comparison.
J Biomed Opt. 2009 Jan-Feb;14(1):014022. doi: 10.1117/1.3083439.
9
Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination.
Biophys J. 2008 Jun;94(12):4957-70. doi: 10.1529/biophysj.107.120345. Epub 2008 Mar 7.
10
Far-field optical nanoscopy based on continuous wave laser stimulated emission depletion.
Rev Sci Instrum. 2010 May;81(5):053709. doi: 10.1063/1.3432001.

引用本文的文献

1
Parallel array with axially coded light-sheet microscope.
Light Sci Appl. 2020 Apr 20;9:65. doi: 10.1038/s41377-020-0310-3. eCollection 2020.
2
Parallelized volumetric fluorescence microscopy with a reconfigurable coded incoherent light-sheet array.
Light Sci Appl. 2020 Jan 20;9:8. doi: 10.1038/s41377-020-0245-8. eCollection 2020.
3
Spatially modulated illumination allows for light sheet fluorescence microscopy with an incoherent source and compressive sensing.
Biomed Opt Express. 2019 Oct 17;10(11):5776-5788. doi: 10.1364/BOE.10.005776. eCollection 2019 Nov 1.
4
Multi-purpose SLM-light-sheet microscope.
Biomed Opt Express. 2018 Oct 12;9(11):5419-5436. doi: 10.1364/BOE.9.005419. eCollection 2018 Nov 1.

本文引用的文献

1
Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens.
Cell. 2012 Dec 7;151(6):1370-85. doi: 10.1016/j.cell.2012.10.008.
3
Multiview light-sheet microscope for rapid in toto imaging.
Nat Methods. 2012 Jun 3;9(7):730-3. doi: 10.1038/nmeth.2064.
5
Optical sectioning microscopy with planar or structured illumination.
Nat Methods. 2011 Sep 29;8(10):811-9. doi: 10.1038/nmeth.1709.
6
Deep and fast live imaging with two-photon scanned light-sheet microscopy.
Nat Methods. 2011 Jul 17;8(9):757-60. doi: 10.1038/nmeth.1652.
7
Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination.
Nat Methods. 2011 May;8(5):417-23. doi: 10.1038/nmeth.1586. Epub 2011 Mar 4.
8
Doppler encoded excitation pattern tomographic optical microscopy.
Appl Opt. 2010 Dec 1;49(34):H47-63. doi: 10.1364/AO.49.000H47.
9
Extended depth of field through wave-front coding.
Appl Opt. 1995 Apr 10;34(11):1859-66. doi: 10.1364/AO.34.001859.
10
A simple scanless two-photon fluorescence microscope using selective plane illumination.
Opt Express. 2010 Apr 12;18(8):8491-8. doi: 10.1364/OE.18.008491.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验