Judkewitz Benjamin, Yang Changhuei
Opt Express. 2014 May 5;22(9):11001-10. doi: 10.1364/OE.22.011001.
Despite their tremendous contribution to biomedical research and diagnosis, conventional spatial sampling techniques such as wide-field, point scanning or selective plane illumination microscopy face inherent limiting trade-offs between spatial resolution, field-of-view, phototoxicity and recording speed. Several of these trade-offs are the result of spatial sampling with diffracting beams. Here, we introduce a new strategy for fluorescence imaging, SWIF, which instead encodes the axial profile of a sample in the Fourier domain. We demonstrate how this can be achieved with propagation-invariant illumination patterns that extend over several millimeters and robustly propagate through layers of varying refractive index. This enabled us to image a lateral field-of-view of 0.8 mm x 1.5 mm with an axial resolution of 2.4 µm - greatly exceeding the lateral field-of-view of conventional illumination techniques (~100 µm) at comparable resolution. Thus, SWIF allowed us to surpass the limitations of diffracting illumination beams and untangle lateral field-of-view from resolution.
尽管传统的空间采样技术,如宽视场、点扫描或选择性平面照明显微镜在生物医学研究和诊断中做出了巨大贡献,但它们在空间分辨率、视野、光毒性和记录速度之间面临着固有的限制权衡。其中一些权衡是由衍射光束的空间采样导致的。在这里,我们介绍了一种新的荧光成像策略——SWIF,它在傅里叶域中对样品的轴向轮廓进行编码。我们展示了如何通过延伸数毫米并能在不同折射率层中稳健传播的传播不变照明模式来实现这一点。这使我们能够以2.4 µm的轴向分辨率对0.8 mm x 1.5 mm的横向视野进行成像,大大超过了传统照明技术在可比分辨率下的横向视野(约100 µm)。因此,SWIF使我们能够超越衍射照明光束的限制,并将横向视野与分辨率区分开来。