Burger Martin, Haškovec Jan, Wolfram Marie-Therese
Institut für Numerische und Angewandte Mathematik, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, 48149 Münster, Germany.
King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
Physica D. 2013 Oct 1;260(100):145-158. doi: 10.1016/j.physd.2012.11.003.
We introduce two models of biological aggregation, based on randomly moving particles with individual stochasticity depending on the perceived average population density in their neighborhood. In the first-order model the location of each individual is subject to a density-dependent random walk, while in the second-order model the density-dependent random walk acts on the velocity variable, together with a density-dependent damping term. The main novelty of our models is that we do not assume any explicit aggregative force acting on the individuals; instead, aggregation is obtained exclusively by reducing the individual stochasticity in response to higher perceived density. We formally derive the corresponding mean-field limits, leading to nonlocal degenerate diffusions. Then, we carry out the mathematical analysis of the first-order model, in particular, we prove the existence of weak solutions and show that it allows for measure-valued steady states. We also perform linear stability analysis and identify conditions for pattern formation. Moreover, we discuss the role of the nonlocality for well-posedness of the first-order model. Finally, we present results of numerical simulations for both the first- and second-order model on the individual-based and continuum levels of description.
我们引入了两种生物聚集模型,它们基于随机移动的粒子,这些粒子具有个体随机性,该随机性取决于其邻域中感知到的平均种群密度。在一阶模型中,每个个体的位置服从密度依赖的随机游走,而在二阶模型中,密度依赖的随机游走作用于速度变量,同时还有一个密度依赖的阻尼项。我们模型的主要新颖之处在于,我们不假设任何作用于个体的明确聚集力;相反,聚集完全是通过响应更高的感知密度来降低个体随机性而实现的。我们正式推导了相应的平均场极限,得到了非局部退化扩散。然后,我们对一阶模型进行数学分析,特别是,我们证明了弱解的存在性,并表明它允许测度值稳态。我们还进行了线性稳定性分析并确定了模式形成的条件。此外,我们讨论了非局部性对一阶模型适定性的作用。最后,我们给出了一阶和二阶模型在基于个体和连续统描述水平上的数值模拟结果。