Suppr超能文献

通过网络传播将基因和蛋白质复合物与疾病相关联。

Associating genes and protein complexes with disease via network propagation.

机构信息

School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.

出版信息

PLoS Comput Biol. 2010 Jan 15;6(1):e1000641. doi: 10.1371/journal.pcbi.1000641.

Abstract

A fundamental challenge in human health is the identification of disease-causing genes. Recently, several studies have tackled this challenge via a network-based approach, motivated by the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein or functional interactions. However, most of these approaches use only local network information in the inference process and are restricted to inferring single gene associations. Here, we provide a global, network-based method for prioritizing disease genes and inferring protein complex associations, which we call PRINCE. The method is based on formulating constraints on the prioritization function that relate to its smoothness over the network and usage of prior information. We exploit this function to predict not only genes but also protein complex associations with a disease of interest. We test our method on gene-disease association data, evaluating both the prioritization achieved and the protein complexes inferred. We show that our method outperforms extant approaches in both tasks. Using data on 1,369 diseases from the OMIM knowledgebase, our method is able (in a cross validation setting) to rank the true causal gene first for 34% of the diseases, and infer 139 disease-related complexes that are highly coherent in terms of the function, expression and conservation of their member proteins. Importantly, we apply our method to study three multi-factorial diseases for which some causal genes have been found already: prostate cancer, alzheimer and type 2 diabetes mellitus. PRINCE's predictions for these diseases highly match the known literature, suggesting several novel causal genes and protein complexes for further investigation.

摘要

在人类健康中,一个基本的挑战是识别致病基因。最近,一些研究通过基于网络的方法来解决这个问题,其动机是观察到导致相同或相似疾病的基因往往在蛋白质-蛋白质或功能相互作用的网络中彼此靠近。然而,这些方法中的大多数在推断过程中仅使用局部网络信息,并且仅限于推断单基因关联。在这里,我们提供了一种全局的、基于网络的方法来优先考虑疾病基因,并推断蛋白质复合物关联,我们称之为 PRINCE。该方法基于对优先级函数的约束进行建模,这些约束与网络上的平滑度和使用先验信息有关。我们利用这个函数不仅预测基因,还预测与感兴趣疾病相关的蛋白质复合物。我们在基因-疾病关联数据上测试了我们的方法,评估了优先级和推断的蛋白质复合物。我们表明,我们的方法在这两个任务中都优于现有的方法。使用来自 OMIM 知识库的 1369 种疾病的数据,在交叉验证设置中,我们的方法能够为 34%的疾病将真正的因果基因排在首位,并推断出 139 个与疾病相关的复合物,这些复合物在成员蛋白的功能、表达和保守性方面具有高度一致性。重要的是,我们将我们的方法应用于研究已经发现一些因果基因的三种多因素疾病:前列腺癌、阿尔茨海默病和 2 型糖尿病。PRINCE 对这些疾病的预测与已知文献高度匹配,提示了一些新的因果基因和蛋白质复合物,以供进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e09c/2797085/b5fe28358c7e/pcbi.1000641.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验