Suppr超能文献

精细化数据分析为慢性青光眼神经退行性变的中枢神经系统控制提供临床证据。

Refined Data Analysis Provides Clinical Evidence for Central Nervous System Control of Chronic Glaucomatous Neurodegeneration.

作者信息

Sponsel William E, Groth Sylvia L, Satsangi Nancy, Maddess Ted, Reilly Matthew A

机构信息

Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA ; Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX, USA ; Baptist Medical Center WESMDPA Glaucoma Service, San Antonio, TX, USA ; Australian Research Council Centre of Excellence in Vision Science, Canberra, Australia.

University of Minnesota Medical School, Minneapolis, MN, USA.

出版信息

Transl Vis Sci Technol. 2014 May 6;3(3):1. doi: 10.1167/tvst.3.3.1. eCollection 2014 May.

Abstract

PURPOSE

Refined data analysis was performed to assess binocular visual field conservation in patients with bilateral glaucomatous damage to determine whether unilateral visual field loss is random, anatomically symmetric, or nonrandom in relation to the fellow eye.

METHODS

This was a case-control study of 47 consecutive patients with bilaterally severe glaucoma; each right eye visual field locus was paired with randomly selected coisopteric left eye loci, with 760,000 (10,000 complete sets of 76 loci) such iterations performed per subject. The potential role of anatomic symmetry in bilateral visual field conservation was also assessed by pairing mirror-image loci of the paired fields. The mean values of the random coisopteric and the symmetric mirror pairings were compared with natural point-for-point pairings of the two eyes by paired -test.

RESULTS

Mean unilateral thresholds across the entire visual field were 18.9 dB left and 19.9 dB right (average 19.4), 4 dB lower than the better of the naturally paired concomitant loci of 23.4 dB ( < 10). A remarkable natural tendency for conservation of the binocular visual field was confirmed, far stronger than explicable by random chance or anatomic symmetry ( < 0.0001), and reaffirmed by subsequent prospective simultaneous binocular visual field retesting of an arbitrary subset ( = 16) of the study population ( < 0.0001).

CONCLUSIONS

Refined data analysis of paired visual fields confirms the existence of a natural optimization of binocular visual function in severe bilateral glaucoma via interlocking fields that could be created only by central nervous system (CNS) involvement.

TRANSLATIONAL RELEVANCE

Integrated bilateral visual field analysis should better define actual visual disability and more accurately reflect the functional efficacy of current ocular and future CNS-oriented therapeutic approaches to the treatment of glaucoma. Glaucomatous eyes provide a highly accessible paired-organ study model for developing therapeutics to optimize conservation of function in neurodegenerative disorders.

摘要

目的

进行精细的数据分析,以评估双侧青光眼性损害患者的双眼视野保留情况,从而确定单眼视野缺损相对于对侧眼是随机的、解剖学对称的还是非随机的。

方法

这是一项对47例双侧重度青光眼患者进行的病例对照研究;每个右眼视野位点与随机选择的同视域左眼位点配对,每位受试者进行760,000次(10,000组完整的76个位点)这样的迭代。还通过配对视野的镜像位点来评估解剖学对称在双眼视野保留中的潜在作用。通过配对t检验,将随机同视域配对和对称镜像配对的平均值与双眼自然点对点配对进行比较。

结果

整个视野的平均单眼阈值左眼为18.9 dB,右眼为19.9 dB(平均19.4),比自然配对的伴随位点中较好的23.4 dB低4 dB(P<0.0001)。证实了双眼视野保留存在显著的自然倾向,远强于随机概率或解剖学对称所能解释的程度(P<0.0001),并且在对研究人群中任意一个子集(n = 16)进行的后续前瞻性同时双眼视野复测中得到再次确认(P<0.0001)。

结论

对配对视野的精细数据分析证实,在严重双侧青光眼中,通过只有中枢神经系统(CNS)参与才能形成的联锁视野,存在双眼视觉功能的自然优化。

转化相关性

综合双侧视野分析应能更好地界定实际视觉残疾,并更准确地反映当前眼科治疗方法以及未来以CNS为导向的青光眼治疗方法的功能疗效。青光眼眼为开发优化神经退行性疾病功能保留的治疗方法提供了一个极易获取的配对器官研究模型。

相似文献

1
Refined Data Analysis Provides Clinical Evidence for Central Nervous System Control of Chronic Glaucomatous Neurodegeneration.
Transl Vis Sci Technol. 2014 May 6;3(3):1. doi: 10.1167/tvst.3.3.1. eCollection 2014 May.
2
Refined Frequency Doubling Perimetry Analysis Reaffirms Central Nervous System Control of Chronic Glaucomatous Neurodegeneration.
Transl Vis Sci Technol. 2015 Jun 8;4(3):7. doi: 10.1167/tvst.4.3.7. eCollection 2015 Jun.
5
Multifocal objective perimetry in the detection of glaucomatous field loss.
Am J Ophthalmol. 2002 Jan;133(1):29-39. doi: 10.1016/s0002-9394(01)01294-6.
6
7
The functional consequences of glaucoma for eye-hand coordination.
Invest Ophthalmol Vis Sci. 2009 Jan;50(1):203-13. doi: 10.1167/iovs.08-2496. Epub 2008 Sep 20.
8
Simulating binocular visual field status in glaucoma.
Br J Ophthalmol. 1998 Nov;82(11):1236-41. doi: 10.1136/bjo.82.11.1236.
9
Performance of frequency-doubling technology perimetry in a population-based prevalence survey of glaucoma: the Tajimi study.
Ophthalmology. 2007 Jan;114(1):27-32. doi: 10.1016/j.ophtha.2006.06.041. Epub 2006 Oct 27.
10

引用本文的文献

1
Influence of intraocular and blood pressure on brain volumes: Observational and Mendelian randomization analyses.
iScience. 2024 Aug 29;27(11):110817. doi: 10.1016/j.isci.2024.110817. eCollection 2024 Nov 15.
3
Degeneration of retina-brain components and connections in glaucoma: Disease causation and treatment options for eyesight preservation.
Curr Res Neurobiol. 2022 Jun 9;3:100037. doi: 10.1016/j.crneur.2022.100037. eCollection 2022.
4
Axon hyperexcitability in the contralateral projection following unilateral optic nerve crush in mice.
Brain Commun. 2022 Oct 3;4(5):fcac251. doi: 10.1093/braincomms/fcac251. eCollection 2022.
5
Advanced Diffusion MRI of the Visual System in Glaucoma: From Experimental Animal Models to Humans.
Biology (Basel). 2022 Mar 16;11(3):454. doi: 10.3390/biology11030454.
6
Ocular Dominance in Open-angle Glaucoma: The Shifting Trend Depending on Stage of the Disease.
Korean J Ophthalmol. 2022 Jun;36(3):236-243. doi: 10.3341/kjo.2021.0165. Epub 2022 Feb 18.
7
8
Diffusion Tensor Imaging of Visual Pathway Abnormalities in Five Glaucoma Animal Models.
Invest Ophthalmol Vis Sci. 2021 Aug 2;62(10):21. doi: 10.1167/iovs.62.10.21.
9
Neural Conduction Along Postretinal Visual Pathways in Glaucoma.
Front Aging Neurosci. 2021 Aug 2;13:697425. doi: 10.3389/fnagi.2021.697425. eCollection 2021.
10
Transneuronal Degeneration in the Brain During Glaucoma.
Front Aging Neurosci. 2021 Apr 6;13:643685. doi: 10.3389/fnagi.2021.643685. eCollection 2021.

本文引用的文献

1
Age-related changes in the visual pathways: blame it on the axon.
Invest Ophthalmol Vis Sci. 2013 Dec 13;54(14):ORSF37-41. doi: 10.1167/iovs.13-12784.
2
Retinal vascular biomarkers for early detection and monitoring of Alzheimer's disease.
Transl Psychiatry. 2013 Feb 26;3(2):e233. doi: 10.1038/tp.2012.150.
3
Failure of axonal transport induces a spatially coincident increase in astrocyte BDNF prior to synapse loss in a central target.
Neuroscience. 2013 Jan 15;229:55-70. doi: 10.1016/j.neuroscience.2012.10.069. Epub 2012 Nov 14.
4
Mitomycin-augmented non-penetrating deep sclerectomy: preoperative gonioscopy and postoperative perimetric, tonometric and medication trends.
Br J Ophthalmol. 2013 Mar;97(3):357-61. doi: 10.1136/bjophthalmol-2012-301886. Epub 2012 Nov 2.
5
Critical pathogenic events underlying progression of neurodegeneration in glaucoma.
Prog Retin Eye Res. 2012 Nov;31(6):702-19. doi: 10.1016/j.preteyeres.2012.07.001. Epub 2012 Aug 1.
6
Identification and characterisation of midbrain nuclei using optimised functional magnetic resonance imaging.
Neuroimage. 2012 Jan 16;59(2):1230-8. doi: 10.1016/j.neuroimage.2011.08.016. Epub 2011 Aug 16.
7
Control from below: the role of a midbrain network in spatial attention.
Eur J Neurosci. 2011 Jun;33(11):1961-72. doi: 10.1111/j.1460-9568.2011.07696.x.
8
Distal axonopathy with structural persistence in glaucomatous neurodegeneration.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5196-201. doi: 10.1073/pnas.0913141107. Epub 2010 Mar 1.
10
Interretinal transduction of injury signals after unilateral optic nerve crush.
Neuroreport. 2009 Feb 18;20(3):301-5. doi: 10.1097/WNR.0b013e32832027e6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验