Engelke Hanna, Chou Chungjung, Uprety Rajendra, Jess Phillip, Deiters Alexander
Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU) , Butenandtstraße 11, 81377 München, Germany.
ACS Synth Biol. 2014 Oct 17;3(10):731-6. doi: 10.1021/sb400192a. Epub 2014 Feb 26.
Controlled manipulation of proteins and their function is important in almost all biological disciplines. Here, we demonstrate control of protein activity with light. We present two different applications-light-triggered transcription and light-triggered protease cleavage-both based on the same concept of protein mislocation, followed by optochemically triggered translocation to an active cellular compartment. In our approach, we genetically encode a photocaged lysine into the nuclear localization signal (NLS) of the transcription factor SATB1. This blocks nuclear import of the protein until illumination induces caging group removal and release of the protein into the nucleus. In the first application, prepending this NLS to the transcription factor FOXO3 allows us to optochemically switch on its transcription activity. The second application uses the developed light-activated NLS to control nuclear import of TEV protease and subsequent cleavage of nuclear proteins containing TEV cleavage sites. The small size of the light-controlled NLS (only 20 amino acids) minimizes impact of its insertion on protein function and promises a general approach to a wide range of optochemical applications. Since the light-activated NLS is genetically encoded and optically triggered, it will prove useful to address a variety of problems requiring spatial and temporal control of protein function, for example, in stem-cell, developmental, and cancer biology.
在几乎所有生物学领域,对蛋白质及其功能进行可控操作都至关重要。在此,我们展示了利用光对蛋白质活性的控制。我们呈现了两种不同的应用——光触发转录和光触发蛋白酶切割——二者均基于相同的蛋白质错误定位概念,随后通过光化学触发易位至活跃的细胞区室。在我们的方法中,我们将一个光笼化赖氨酸基因编码到转录因子SATB1的核定位信号(NLS)中。这会阻止该蛋白质的核输入,直到光照诱导笼化基团去除并使蛋白质释放到细胞核中。在第一个应用中,将此NLS置于转录因子FOXO3之前,使我们能够通过光化学方式开启其转录活性。第二个应用利用所开发的光激活NLS来控制TEV蛋白酶的核输入以及随后对含有TEV切割位点的核蛋白的切割。光控NLS的小尺寸(仅20个氨基酸)使其插入对蛋白质功能的影响最小化,并有望为广泛的光化学应用提供一种通用方法。由于光激活NLS是基因编码且由光触发的,它将被证明在解决各种需要对蛋白质功能进行空间和时间控制的问题时很有用,例如在干细胞、发育和癌症生物学中。