Goodman Ronald N, Rietschel Jeremy C, Roy Anindo, Jung Brian C, Diaz Jason, Macko Richard F, Forrester Larry W
Baltimore VAMC Annex, Maryland Exercise and Robotics Center of Excellence, 209 W. Fayette St, Rm 207, Baltimore, MD 21201.
J Rehabil Res Dev. 2014;51(2):213-27. doi: 10.1682/JRRD.2013.02.0050.
Robotics is rapidly emerging as a viable approach to enhance motor recovery after disabling stroke. Current principles of cognitive motor learning recognize a positive relationship between reward and motor learning. Yet no prior studies have established explicitly whether reward improves the rate or efficacy of robotics-assisted rehabilitation or produces neurophysiologic adaptations associated with motor learning. We conducted a 3 wk, 9-session clinical pilot with 10 people with chronic hemiparetic stroke, randomly assigned to train with an impedance-controlled ankle robot (anklebot) under either high reward (HR) or low reward conditions. The 1 h training sessions entailed playing a seated video game by moving the paretic ankle to hit moving onscreen targets with the anklebot only providing assistance as needed. Assessments included paretic ankle motor control, learning curves, electroencephalograpy (EEG) coherence and spectral power during unassisted trials, and gait function. While both groups exhibited changes in EEG, the HR group had faster learning curves (p = 0.05), smoother movements (p </= 0.05), reduced contralesional-frontoparietal coherence (p </= 0.05), and reduced left-temporal spectral power (p </= 0.05). Gait analyses revealed an increase in nonparetic step length (p = 0.05) in the HR group only. These results suggest that combining explicit rewards with novel anklebot training may accelerate motor learning for restoring mobility.
机器人技术正迅速成为一种可行的方法,以促进致残性中风后的运动恢复。当前认知运动学习的原理认识到奖励与运动学习之间存在积极关系。然而,此前尚无研究明确确定奖励是否能提高机器人辅助康复的速度或效果,或者是否能产生与运动学习相关的神经生理适应性变化。我们对10名慢性偏瘫性中风患者进行了一项为期3周、共9节的临床试点研究,将他们随机分配到高奖励(HR)或低奖励条件下,使用阻抗控制的踝关节机器人(anklebot)进行训练。1小时的训练课程包括坐在座位上玩电子游戏,通过移动患侧踝关节来击中屏幕上移动的目标,anklebot仅在需要时提供辅助。评估内容包括患侧踝关节运动控制、学习曲线、无辅助试验期间的脑电图(EEG)相干性和频谱功率,以及步态功能。虽然两组的EEG均有变化,但HR组的学习曲线更快(p = 0.05)、运动更平稳(p≤0.05)、对侧额顶叶相干性降低(p≤0.05),左侧颞叶频谱功率降低(p≤0.05)。步态分析显示,仅HR组的非患侧步长增加(p = 0.05)。这些结果表明,将明确的奖励与新型anklebot训练相结合,可能会加速运动学习以恢复活动能力。