Suppr超能文献

癌症精准医学中的影像信息学评估

An Assessment of Imaging Informatics for Precision Medicine in Cancer.

作者信息

Chennubhotla C, Clarke L P, Fedorov A, Foran D, Harris G, Helton E, Nordstrom R, Prior F, Rubin D, Saltz J H, Shalley E, Sharma A

出版信息

Yearb Med Inform. 2017 Aug;26(1):110-119. doi: 10.15265/IY-2017-041. Epub 2017 Sep 11.

Abstract

Precision medicine requires the measurement, quantification, and cataloging of medical characteristics to identify the most effective medical intervention. However, the amount of available data exceeds our current capacity to extract meaningful information. We examine the informatics needs to achieve precision medicine from the perspective of quantitative imaging and oncology. The National Cancer Institute (NCI) organized several workshops on the topic of medical imaging and precision medicine. The observations and recommendations are summarized herein. Recommendations include: use of standards in data collection and clinical correlates to promote interoperability; data sharing and validation of imaging tools; clinician's feedback in all phases of research and development; use of open-source architecture to encourage reproducibility and reusability; use of challenges which simulate real-world situations to incentivize innovation; partnership with industry to facilitate commercialization; and education in academic communities regarding the challenges involved with translation of technology from the research domain to clinical utility and the benefits of doing so. This article provides a survey of the role and priorities for imaging informatics to help advance quantitative imaging in the era of precision medicine. While these recommendations were drawn from oncology, they are relevant and applicable to other clinical domains where imaging aids precision medicine.

摘要

精准医学需要对医学特征进行测量、量化和编目,以确定最有效的医学干预措施。然而,可用数据量超出了我们目前提取有意义信息的能力。我们从定量成像和肿瘤学的角度审视实现精准医学所需的信息学需求。美国国立癌症研究所(NCI)组织了几次关于医学成像和精准医学主题的研讨会。本文总结了相关观察结果和建议。建议包括:在数据收集和临床关联中使用标准以促进互操作性;成像工具的数据共享和验证;临床医生在研发各阶段的反馈;使用开源架构以鼓励可重复性和可重用性;利用模拟现实世界情况的挑战来激励创新;与行业合作以促进商业化;以及在学术社区开展关于将技术从研究领域转化为临床应用所涉及的挑战及这样做的益处的教育。本文概述了成像信息学的作用和优先事项,以帮助在精准医学时代推进定量成像。虽然这些建议源自肿瘤学,但它们与其他成像辅助精准医学的临床领域相关且适用。

相似文献

1
An Assessment of Imaging Informatics for Precision Medicine in Cancer.癌症精准医学中的影像信息学评估
Yearb Med Inform. 2017 Aug;26(1):110-119. doi: 10.15265/IY-2017-041. Epub 2017 Sep 11.
2
Machine Learning and Imaging Informatics in Oncology.肿瘤学中的机器学习和成像信息学。
Oncology. 2020;98(6):344-362. doi: 10.1159/000493575. Epub 2018 Nov 23.
9
Quantitative Imaging Informatics for Cancer Research.癌症研究的定量成像信息学。
JCO Clin Cancer Inform. 2020 May;4:444-453. doi: 10.1200/CCI.19.00165.

引用本文的文献

8
Deep learning workflow in radiology: a primer.放射学中的深度学习工作流程:入门指南。
Insights Imaging. 2020 Feb 10;11(1):22. doi: 10.1186/s13244-019-0832-5.
10
Methods for Segmentation and Classification of Digital Microscopy Tissue Images.数字显微镜组织图像的分割与分类方法
Front Bioeng Biotechnol. 2019 Apr 2;7:53. doi: 10.3389/fbioe.2019.00053. eCollection 2019.

本文引用的文献

1
Role of Imaging in the Era of Precision Medicine.影像技术在精准医学时代的作用。
Acad Radiol. 2017 May;24(5):639-649. doi: 10.1016/j.acra.2016.11.021. Epub 2017 Jan 25.
2
The Quantitative Imaging Network in Precision Medicine.精准医学中的定量成像网络。
Tomography. 2016 Dec;2(4):239-241. doi: 10.18383/j.tom.2016.00190.
3
Toward a Shared Vision for Cancer Genomic Data.迈向癌症基因组数据的共同愿景。
N Engl J Med. 2016 Sep 22;375(12):1109-12. doi: 10.1056/NEJMp1607591.
4
A U.S. "Cancer Moonshot" to accelerate cancer research.美国发起“抗癌登月计划”以加速癌症研究。
Science. 2016 Sep 9;353(6304):1105-6. doi: 10.1126/science.aai7862. Epub 2016 Sep 7.
7
Quantitative Imaging in Cancer Clinical Trials.癌症临床试验中的定量成像
Clin Cancer Res. 2016 Jan 15;22(2):284-90. doi: 10.1158/1078-0432.CCR-14-3336.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验