Smith E L, Kanczler J M, Gothard D, Roberts C A, Wells J A, White L J, Qutachi O, Sawkins M J, Peto H, Rashidi H, Rojo L, Stevens M M, El Haj A J, Rose F R A J, Shakesheff K M, Oreffo R O C
Bone & Joint Research Group, Human Development & Health, Institute of Developmental Sciences, University of Southampton, Southampton, UK.
Bone & Joint Research Group, Human Development & Health, Institute of Developmental Sciences, University of Southampton, Southampton, UK.
Acta Biomater. 2014 Oct;10(10):4186-96. doi: 10.1016/j.actbio.2014.06.011. Epub 2014 Jun 14.
Current clinical treatments for skeletal conditions resulting in large-scale bone loss include autograft or allograft, both of which have limited effectiveness. In seeking to address bone regeneration, several tissue engineering strategies have come to the fore, including the development of growth factor releasing technologies and appropriate animal models to evaluate repair. Ex vivo models represent a promising alternative to simple in vitro systems or complex, ethically challenging in vivo models. We have developed an ex vivo culture system of whole embryonic chick femora, adapted in this study as a critical size defect model to investigate the effects of novel bone extracellular matrix (bECM) hydrogel scaffolds containing spatio-temporal growth factor-releasing microparticles and skeletal stem cells on bone regeneration, to develop a viable alternative treatment for skeletal degeneration. Alginate/bECM hydrogels combined with poly (d,l-lactic-co-glycolic acid) (PDLLGA)/triblock copolymer (10-30% PDLLGA-PEG-PDLLGA) microparticles releasing VEGF, TGF-β3 or BMP-2 were placed, with human adult Stro-1+ bone marrow stromal cells, into 2mm central segmental defects in embryonic chick femurs. Alginate/bECM hydrogels loaded with HSA/VEGF or HSA/TGF-β3 demonstrated a cartilage-like phenotype, with minimal collagen I deposition, comparable to HSA-only control hydrogels. The addition of BMP-2 releasing microparticles resulted in enhanced structured bone matrix formation, evidenced by increased Sirius red-stained matrix and collagen expression within hydrogels. This study demonstrates delivery of bioactive growth factors from a novel alginate/bECM hydrogel to augment skeletal tissue formation and the use of an organotypic chick femur defect culture system as a high-throughput test model for scaffold/cell/growth factor therapies for regenerative medicine.
目前针对导致大规模骨质流失的骨骼疾病的临床治疗方法包括自体移植或异体移植,但这两种方法的效果都有限。在寻求解决骨再生问题的过程中,几种组织工程策略应运而生,包括开发生长因子释放技术以及用于评估修复效果的合适动物模型。体外模型是简单的体外系统或复杂的、在伦理上具有挑战性的体内模型的一个有前景的替代方案。我们开发了一种全胚胎鸡股骨的体外培养系统,在本研究中,该系统被用作临界尺寸缺损模型,以研究含有时空生长因子释放微粒和骨骼干细胞的新型骨细胞外基质(bECM)水凝胶支架对骨再生的影响,从而开发一种可行的替代治疗方法来治疗骨骼退变。将藻酸盐/bECM水凝胶与释放血管内皮生长因子(VEGF)、转化生长因子-β3(TGF-β3)或骨形态发生蛋白-2(BMP-2)的聚(d,l-乳酸-共-乙醇酸)(PDLLGA)/三嵌段共聚物(10-30% PDLLGA-聚乙二醇- PDLLGA)微粒以及成人Stro-1+骨髓基质细胞一起植入胚胎鸡股骨的2mm中央节段性缺损处。负载人血清白蛋白(HSA)/VEGF或HSA/TGF-β3的藻酸盐/bECM水凝胶表现出软骨样表型,I型胶原蛋白沉积极少,与仅含HSA的对照水凝胶相当。添加释放BMP-2的微粒导致结构化骨基质形成增强,水凝胶内天狼星红染色基质增加和胶原蛋白表达增加证明了这一点。本研究证明了从新型藻酸盐/bECM水凝胶中递送生物活性生长因子以增强骨骼组织形成,以及使用器官型鸡股骨缺损培养系统作为再生医学中支架/细胞/生长因子疗法的高通量测试模型。