Black C, Kanczler J M, de Andrés M C, White L J, Savi F M, Bas O, Saifzadeh S, Henkel J, Zannettino A, Gronthos S, Woodruff M A, Hutmacher D W, Oreffo R O C
Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton, SO16 6YD, UK.
Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton, SO16 6YD, UK; Cartilage Epigenetics Group, Rheumatology Division, Biomedical Research Institute of A Coruña (INIBIC), Hospital Universitario de A Coruña-CHUAC, 15006 A Coruña ,Spain.
Biomaterials. 2020 Jul;247:119998. doi: 10.1016/j.biomaterials.2020.119998. Epub 2020 Apr 1.
Many skeletal tissue regenerative strategies centre around the multifunctional properties of bone marrow derived stromal cells (BMSC) or mesenchymal stem/stromal cells (MSC)/bone marrow derived skeletal stem cells (SSC). Specific identification of these particular stem cells has been inconclusive. However, enriching these heterogeneous bone marrow cell populations with characterised skeletal progenitor markers has been a contributing factor in successful skeletal bone regeneration and repair strategies. In the current studies we have isolated, characterised and enriched ovine bone marrow mesenchymal stromal cells (oBMSCs) using a specific antibody, Stro-4, examined their multipotential differentiation capacity and, in translational studies combined Stro-4+ oBMSCs with a bovine extracellular matrix (bECM) hydrogel and a biocompatible melt electro-written medical-grade polycaprolactone scaffold, and tested their bone regenerative capacity in a small in vivo, highly vascularised, chick chorioallantoic membrane (CAM) model and a preclinical, critical-sized ovine segmental tibial defect model. Proliferation rates and CFU-F formation were similar between unselected and Stro-4+ oBMSCs. Col1A1, Col2A1, mSOX-9, PPARG gene expression were upregulated in respective osteogenic, chondrogenic and adipogenic culture conditions compared to basal conditions with no significant difference between Stro-4+ and unselected oBMSCs. In contrast, proteoglycan expression, alkaline phosphatase activity and adipogenesis were significantly upregulated in the Stro-4+ cells. Furthermore, with extended cultures, the oBMSCs had a predisposition to maintain a strong chondrogenic phenotype. In the CAM model Stro-4+ oBMSCs/bECM hydrogel was able to induce bone formation at a femur fracture site compared to bECM hydrogel and control blank defect alone. Translational studies in a critical-sized ovine tibial defect showed autograft samples contained significantly more bone, (4250.63 mm, SD = 1485.57) than blank (1045.29 mm, SD = 219.68) ECM-hydrogel (1152.58 mm, SD = 191.95) and Stro-4+/ECM-hydrogel (1127.95 mm, SD = 166.44) groups. Stro-4+ oBMSCs demonstrated a potential to aid bone repair in vitro and in a small in vivo bone defect model using select scaffolds. However, critically, translation to a large related preclinical model demonstrated the complexities of bringing small scale reported stem-cell material therapies to a clinically relevant model and thus facilitate progression to the clinic.
许多骨骼组织再生策略都围绕着骨髓间充质干细胞(BMSC)、间充质干细胞(MSC)/骨髓来源的骨骼干细胞(SSC)的多功能特性展开。对这些特定干细胞的特异性识别尚无定论。然而,用具有特征性的骨骼祖细胞标志物富集这些异质性骨髓细胞群体,是成功的骨骼再生和修复策略的一个促成因素。在当前的研究中,我们使用一种特异性抗体Stro-4分离、鉴定并富集了绵羊骨髓间充质干细胞(oBMSC),检测了它们的多能分化能力,并在转化研究中,将Stro-4+ oBMSC与牛细胞外基质(bECM)水凝胶和生物相容性熔融电纺医用级聚己内酯支架相结合,并在一个小型的、高度血管化的鸡胚绒毛尿囊膜(CAM)模型和一个临床前的、临界尺寸的绵羊胫骨节段性缺损模型中测试了它们的骨再生能力。未分选的oBMSC和Stro-4+ oBMSC的增殖率和集落形成单位 - 成纤维细胞(CFU-F)形成相似。与基础条件相比,在各自的成骨、软骨生成和脂肪生成培养条件下,Col1A1、Col2A1、mSOX-9、PPARG基因表达上调,Stro-4+ oBMSC和未分选的oBMSC之间无显著差异。相比之下,Stro-4+细胞中的蛋白聚糖表达、碱性磷酸酶活性和脂肪生成显著上调。此外,随着培养时间延长,oBMSC倾向于维持强大的软骨生成表型。在CAM模型中,与单独的bECM水凝胶和对照空白缺损相比,Stro-4+ oBMSC/bECM水凝胶能够在股骨骨折部位诱导骨形成。在临界尺寸的绵羊胫骨缺损的转化研究中,自体移植样本中的骨量(4250.63立方毫米,标准差 = 1485.57)明显多于空白组(1045.29立方毫米,标准差 = 219.68)、ECM水凝胶组(1152.58立方毫米,标准差 = 191.95)和Stro-4+/ECM水凝胶组(1127.95立方毫米,标准差 = 166.44)。Stro-4+ oBMSC在体外和使用选定支架的小型体内骨缺损模型中显示出有助于骨修复的潜力。然而,关键的是,向大型相关临床前模型的转化证明了将小规模报道的干细胞材料疗法应用于临床相关模型的复杂性,从而促进向临床的进展。