Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States.
ACS Nano. 2014 Jul 22;8(7):6934-44. doi: 10.1021/nn501704k. Epub 2014 Jun 17.
Controlling the morphology of nanocrystals (NCs) is of paramount importance for both fundamental studies and practical applications. The morphology of NCs is determined by the seed structure and the following facet growth. While means for directing facet formation in NC growth have been extensively studied, rational strategies for the production of NCs bearing structure defects in seeds have been much less explored. Here, we report mechanistic investigations of high density twin formation induced by specific peptides in platinum (Pt) NC growth, on the basis of which we derive principles that can serve as guidelines for the rational design of molecular surfactants to introduce high yield twinning in noble metal NC syntheses. Two synergistic factors are identified in producing twinned Pt NCs with the peptide: (1) the altered reduction kinetics and crystal growth pathway as a result of the complex formation between the histidine residue on the peptide and Pt ions, and (2) the preferential stabilization of {111} planes upon the formation of twinned seeds. We further apply the discovered principles to the design of small organic molecules bearing similar binding motifs as ligands/surfactants to create single and multiple twinned Pd and Rh NCs. Our studies demonstrate the rich information derived from biomimetic synthesis and the broad applicability of biomimetic principles to NC synthesis for diverse property tailoring.
控制纳米晶体 (NC) 的形态对于基础研究和实际应用都至关重要。NC 的形态取决于种子结构和随后的晶面生长。虽然已经广泛研究了指导 NC 生长中晶面形成的方法,但对于在种子中产生具有结构缺陷的 NC 的合理策略的研究却很少。在这里,我们报告了在铂 (Pt) NC 生长中特定肽诱导高密度孪晶形成的机理研究,在此基础上,我们得出了一些原则,可以作为指导合理设计分子表面活性剂的指南,以在贵金属 NC 合成中引入高产率孪晶。在使用肽生产孪晶 Pt NC 时,确定了两个协同因素:(1) 由于肽上的组氨酸残基与 Pt 离子之间形成配合物,导致还原动力学和晶体生长途径发生改变,以及 (2) 在孪晶种子形成时,{111} 面的优先稳定化。我们进一步将发现的原理应用于设计具有类似结合基序的小分子,作为配体/表面活性剂,以创造单孪晶和多孪晶 Pd 和 Rh NC。我们的研究表明,从仿生合成中获得的丰富信息以及仿生原理在 NC 合成中的广泛适用性,可以实现不同性能的定制。