Boussicault Lydie, Hérard Anne-Sophie, Calingasan Noel, Petit Fanny, Malgorn Carole, Merienne Nicolas, Jan Caroline, Gaillard Marie-Claude, Lerchundi Rodrigo, Barros Luis F, Escartin Carole, Delzescaux Thierry, Mariani Jean, Hantraye Philippe, Beal M Flint, Brouillet Emmanuel, Véga Céline, Bonvento Gilles
Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen) and CNRS CEA URA 2210, Fontenay-aux-Roses, France.
Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, New York, USA.
J Cereb Blood Flow Metab. 2014 Sep;34(9):1500-10. doi: 10.1038/jcbfm.2014.110. Epub 2014 Jun 18.
Huntington's disease (HD) is caused by cytosine-adenine-guanine (CAG) repeat expansions in the huntingtin (Htt) gene. Although early energy metabolic alterations in HD are likely to contribute to later neurodegenerative processes, the cellular and molecular mechanisms responsible for these metabolic alterations are not well characterized. Using the BACHD mice that express the full-length mutant huntingtin (mHtt) protein with 97 glutamine repeats, we first demonstrated localized in vivo changes in brain glucose use reminiscent of what is observed in premanifest HD carriers. Using biochemical, molecular, and functional analyses on different primary cell culture models from BACHD mice, we observed that mHtt does not directly affect metabolic activity in a cell autonomous manner. However, coculture of neurons with astrocytes from wild-type or BACHD mice identified mutant astrocytes as a source of adverse non-cell autonomous effects on neuron energy metabolism possibly by increasing oxidative stress. These results suggest that astrocyte-to-neuron signaling is involved in early energy metabolic alterations in HD.
亨廷顿舞蹈症(HD)由亨廷顿蛋白(Htt)基因中的胞嘧啶 - 腺嘌呤 - 鸟嘌呤(CAG)重复序列扩增引起。尽管HD早期的能量代谢改变可能导致后期的神经退行性病变过程,但其导致这些代谢改变的细胞和分子机制尚未完全明确。我们使用表达含97个谷氨酰胺重复序列的全长突变型亨廷顿蛋白(mHtt)的BACHD小鼠,首次在体内证明了脑葡萄糖利用的局部变化,这与在症状前HD携带者中观察到的情况相似。通过对来自BACHD小鼠的不同原代细胞培养模型进行生化、分子和功能分析,我们观察到mHtt不会以细胞自主方式直接影响代谢活性。然而,将野生型或BACHD小鼠的神经元与星形胶质细胞共培养发现,突变的星形胶质细胞可能通过增加氧化应激,成为对神经元能量代谢产生不良非细胞自主效应的来源。这些结果表明,星形胶质细胞到神经元的信号传导参与了HD早期的能量代谢改变。