Kim Yihyang, Dube Solomon Ergando, Park Chan Bae
Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea.
Korean J Physiol Pharmacol. 2025 Jan 1;29(1):1-8. doi: 10.4196/kjpp.24.388.
The brain's substantial metabolic requirements, consuming a substantial fraction of the body's total energy despite its relatively small mass, necessitate sophisticated metabolic mechanisms for efficient energy distribution and utilization. The astrocyte-neuron lactate shuttle (ANLS) hypothesis has emerged as a fundamental framework explaining the metabolic cooperation between astrocytes and neurons, whereby astrocyte-derived lactate serves as a crucial energy substrate for neurons. This review synthesizes current understanding of brain energy metabolism, focusing on the dual roles of lactate as both an energy substrate and a signaling molecule. We examine the molecular underpinnings of metabolic compartmentalization, particularly the differential expression of lactate dehydrogenase (LDH) isozymes between astrocytes and neurons, which facilitates directional lactate flux. Recent evidence has challenged aspects of the classical ANLS model, revealing greater metabolic flexibility in neurons than previously recognized, including substantial LDHA expression and direct glucose utilization capabilities. Our recent studies on LDHB-deficient neurons provide new insights into the compensatory mechanisms and limitations of neuronal lactate metabolism, suggesting a more nuanced understanding of the ANLS hypothesis. Furthermore, we discuss lactate's emerging role as a signaling molecule in synaptic plasticity, memory formation, and neuroprotection, particularly in ischemic conditions where elevated lactate levels correlate with enhanced neuronal survival through prostaglandin E2-mediated vasodilation. This comprehensive review integrates classical perspectives with recent advances, providing an updated framework for understanding brain lactate metabolism and its therapeutic implications in neurological disorders.
大脑巨大的代谢需求,尽管其质量相对较小却消耗了身体总能量的很大一部分,这就需要复杂的代谢机制来实现高效的能量分配和利用。星形胶质细胞 - 神经元乳酸穿梭(ANLS)假说已成为解释星形胶质细胞与神经元之间代谢合作的基本框架,据此,星形胶质细胞衍生的乳酸作为神经元的关键能量底物。这篇综述综合了当前对脑能量代谢的理解,重点关注乳酸作为能量底物和信号分子的双重作用。我们研究了代谢区室化的分子基础,特别是星形胶质细胞和神经元之间乳酸脱氢酶(LDH)同工酶的差异表达,这促进了乳酸的定向流动。最近的证据对经典ANLS模型的一些方面提出了挑战,揭示出神经元的代谢灵活性比以前认识到的更高,包括大量的LDHA表达和直接利用葡萄糖的能力。我们最近对缺乏LDHB的神经元的研究为神经元乳酸代谢的补偿机制和局限性提供了新的见解,表明对ANLS假说有了更细致入微的理解。此外,我们讨论了乳酸作为信号分子在突触可塑性、记忆形成和神经保护中的新兴作用,特别是在缺血条件下,乳酸水平升高通过前列腺素E2介导的血管舒张与增强的神经元存活相关。这篇全面的综述将经典观点与最新进展相结合,为理解脑乳酸代谢及其在神经系统疾病中的治疗意义提供了一个更新的框架。