Suppr超能文献

利用光相干断层扫描术测量小鼠晶状体的折射率。

Refractive index measurement of the mouse crystalline lens using optical coherence tomography.

机构信息

Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE Atlanta, GA 30322, USA; Center of Excellence in Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA 30033, USA.

Center of Excellence in Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA 30033, USA.

出版信息

Exp Eye Res. 2014 Aug;125:62-70. doi: 10.1016/j.exer.2014.05.015. Epub 2014 Jun 2.

Abstract

In recent years, there has been a growing interest for using mouse models in refractive development and myopia research. The crystalline lens is a critical optical component of the mouse eye that occupies greater than 50% of the ocular space, and significant increases in thickness with age. However, changes in refractive index of the mouse crystalline lens are less known. In this study, we examined the changes in thickness and refractive index of the mouse crystalline lens for two different strains, wild-type (WT) and a nyx mutant (nob) over the course of normal visual development or after form deprivation. Refractive index and lens thickness measurements were made on ex vivo lenses using spectral domain optical coherence tomography (SD-OCT). Comparison of refractive index measurements on 5 standard ball lenses using the SD-OCT and their known refractive indices (manufacturer provided) indicated good precision (intra-class correlation coefficient, 0.998 and Bland-Altman coefficient of repeatability, 0.116) of the SD-OCT to calculate mouse lens refractive index ex vivo. During normal visual development, lens thickness increased significantly with age for three different cohorts of mice, aged 4 (average thickness from both eyes; WT: 1.78 ± 0.03, nob: 1.79 ± 0.08 mm), 10 (WT: 2.02 ± 0.05, nob: 2.01 ± 0.04 mm) and 16 weeks (WT: 2.12 ± 0.06, nob: 2.09 ± 0.06 mm, p < 0.001). Lens thickness was not significantly different between the two strains at any age (p = 0.557). For mice with normal vision, refractive index for isolated crystalline lenses in nob mice was significantly greater than WT mice (mean for all ages; WT: 1.42 ± 0.01, nob: 1.44 ± 0.001, p < 0.001). After 4 weeks of form deprivation to the right eye using a skull-mounted goggling apparatus, a thinning of the crystalline lens was observed in both right and left eyes of goggled animals compared to their naïve controls (average from both the right and the left eye) for both strains (p = 0.052). In form deprived mice, lens refractive index was significantly different between the goggled animals and non-goggled naïve controls in nob mice, but not in WT mice (p = 0.009). Both eyes of goggled nob mice had significantly greater lens refractive index (goggled, 1.49 ± 0.01; opposite, 1.47 ± 0.03) compared to their naïve controls (1.45 ± 0.02, p < 0.05). The results presented here suggest that there are genetic differences in the crystalline lens refractive index of the mouse eye, and that the lens refractive index in mice significantly increase with form deprivation. Research applications requiring precise optical measurements of the mouse eye should take these lens refractive indices into account when interpreting SD-OCT data.

摘要

近年来,人们对使用小鼠模型进行屈光发育和近视研究越来越感兴趣。晶状体是小鼠眼睛的一个关键光学部件,占据了眼内空间的 50%以上,并且随着年龄的增长而显著增厚。然而,小鼠晶状体折射率的变化知之甚少。在这项研究中,我们研究了两种不同品系(野生型[WT]和 nyx 突变体[nob])的晶状体厚度和折射率在正常视觉发育过程中的变化,或在形觉剥夺后。使用光谱域光相干断层扫描(SD-OCT)对离体晶状体进行了折射率和晶状体厚度的测量。使用 SD-OCT 对 5 个标准球晶状体的折射率测量值与它们已知的折射率(制造商提供)进行比较,表明 SD-OCT 能够很好地计算离体小鼠晶状体的折射率(组内相关系数为 0.998,Bland-Altman 重复性系数为 0.116)。在正常视觉发育过程中,3 组不同年龄的小鼠晶状体厚度随着年龄的增长显著增加,分别为 4 周龄(双眼平均厚度;WT:1.78±0.03,nob:1.79±0.08mm)、10 周龄(WT:2.02±0.05,nob:2.01±0.04mm)和 16 周龄(WT:2.12±0.06,nob:2.09±0.06mm,p<0.001)。在任何年龄,两种品系的晶状体厚度均无显著差异(p=0.557)。对于具有正常视力的小鼠,nob 小鼠的离体晶状体折射率明显大于 WT 小鼠(所有年龄的平均值;WT:1.42±0.01,nob:1.44±0.001,p<0.001)。在使用颅骨安装的眼罩对右眼进行 4 周的形觉剥夺后,与未经处理的对照相比,两只眼的晶状体都变薄了(两种品系的右眼和左眼平均值;p=0.052)。在形觉剥夺的小鼠中,nob 小鼠的眼罩动物与未经处理的对照之间的晶状体折射率有显著差异,但在 WT 小鼠中则没有(p=0.009)。两只眼的 nob 小鼠的晶状体折射率(眼罩,1.49±0.01;对侧,1.47±0.03)均显著大于其未经处理的对照(1.45±0.02,p<0.05)。这里呈现的结果表明,小鼠眼睛的晶状体折射率存在遗传差异,并且小鼠晶状体的折射率随着形觉剥夺而显著增加。需要对小鼠眼睛进行精确光学测量的研究应用在解释 SD-OCT 数据时应考虑到这些晶状体折射率。

相似文献

7
Refractive Index Measurement of the Crystalline Lens in Vivo.活体晶状体折射率测量。
Optom Vis Sci. 2023 Dec 1;100(12):823-832. doi: 10.1097/OPX.0000000000002081. Epub 2023 Oct 25.

引用本文的文献

本文引用的文献

1
Investigating mechanisms of myopia in mice.研究小鼠近视的机制。
Exp Eye Res. 2013 Sep;114:96-105. doi: 10.1016/j.exer.2012.12.014. Epub 2013 Jan 7.
2
Single-shot dimension measurements of the mouse eye using SD-OCT.使用频域光学相干断层扫描(SD-OCT)对小鼠眼睛进行单次尺寸测量。
Ophthalmic Surg Lasers Imaging. 2012 May-Jun;43(3):252-6. doi: 10.3928/15428877-20120308-04. Epub 2012 Mar 15.
3
Assessment of axial length measurements in mouse eyes.小鼠眼球眼轴长度测量的评估
Optom Vis Sci. 2012 Mar;89(3):296-303. doi: 10.1097/OPX.0b013e31824529e5.
8
Relative axial myopia induced by prolonged light exposure in C57BL/6 mice.长期光照诱导 C57BL/6 小鼠的相对轴性近视。
Photochem Photobiol. 2010 Jan-Feb;86(1):131-7. doi: 10.1111/j.1751-1097.2009.00637.x. Epub 2009 Nov 12.
10
Mouse experimental myopia has features of primate myopia.小鼠实验性近视具有灵长类近视的特征。
Invest Ophthalmol Vis Sci. 2010 Mar;51(3):1297-303. doi: 10.1167/iovs.09-4153. Epub 2009 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验