Mitchell Travis J, Zugarramurdi Camila, Olivera J Fernando, Gatto Craig, Artigas Pablo
Department of Cell and Molecular Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas; School of Biological Sciences. Illinois State University, Normal, Illinois.
Department of Cell and Molecular Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas.
Biophys J. 2014 Jun 17;106(12):2555-65. doi: 10.1016/j.bpj.2014.04.053.
The Na/K pump hydrolyzes ATP to export three intracellular Na (Nai) as it imports two extracellular K (Ko) across animal plasma membranes. Within the protein, two ion-binding sites (sites I and II) can reciprocally bind Na or K, but a third site (site III) exclusively binds Na in a voltage-dependent fashion. In the absence of Nao and Ko, the pump passively imports protons, generating an inward current (IH). To elucidate the mechanisms of IH, we used voltage-clamp techniques to investigate the [H]o, [Na]o, and voltage dependence of IH in Na/K pumps from ventricular myocytes and in ouabain-resistant pumps expressed in Xenopus oocytes. Lowering pHo revealed that Ho both activates IH (in a voltage-dependent manner) and inhibits it (in a voltage-independent manner) by binding to different sites. Nao effects depend on pHo; at pHo where no Ho inhibition is observed, Nao inhibits IH at all concentrations, but when applied at pHo that inhibits pump-mediated current, low [Na]o activates IH and high [Na]o inhibits it. Our results demonstrate that IH is a property inherent to Na/K pumps, not linked to the oocyte expression environment, explains differences in the characteristics of IH previously reported in the literature, and supports a model in which 1), protons leak through site III; 2), binding of two Na or two protons to sites I and II inhibits proton transport; and 3), pumps with mixed Na/proton occupancy of sites I and II remain permeable to protons.
钠钾泵水解ATP,在将两个细胞外钾离子(Ko)转运到动物质膜内的同时,将三个细胞内钠离子(Nai)排出细胞。在该蛋白质内部,两个离子结合位点(位点I和位点II)可以相互结合钠或钾,但第三个位点(位点III)以电压依赖的方式专门结合钠。在没有细胞外钠和钾的情况下,该泵被动转运质子,产生内向电流(IH)。为了阐明内向电流的机制,我们使用电压钳技术研究了心室肌细胞钠钾泵以及非洲爪蟾卵母细胞中表达的哇巴因抗性泵的内向电流对细胞外氢离子浓度([H]o)、细胞外钠离子浓度([Na]o)和电压的依赖性。降低细胞外氢离子浓度表明,氢离子通过结合不同位点,既(以电压依赖的方式)激活内向电流,又(以电压非依赖的方式)抑制内向电流。细胞外钠离子的作用取决于细胞外氢离子浓度;在未观察到氢离子抑制作用的细胞外氢离子浓度下,所有浓度的细胞外钠离子均抑制内向电流,但在能抑制泵介导电流的细胞外氢离子浓度下施加时,低细胞外钠离子浓度激活内向电流,高细胞外钠离子浓度抑制内向电流。我们的结果表明,内向电流是钠钾泵固有的特性,与卵母细胞表达环境无关,解释了文献中先前报道的内向电流特征的差异,并支持这样一种模型:1)质子通过位点III泄漏;2)两个钠或两个质子与位点I和位点II的结合抑制质子转运;3)位点I和位点II上钠/质子混合占据的泵对质子仍具有通透性。