Suppr超能文献

基于知识的罕见病药物发现方法。

Knowledge-based approaches to drug discovery for rare diseases.

机构信息

Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; UNC Catalyst for Rare Diseases, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.

Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

Drug Discov Today. 2022 Feb;27(2):490-502. doi: 10.1016/j.drudis.2021.10.014. Epub 2021 Oct 27.

Abstract

The conventional drug discovery pipeline has proven to be unsustainable for rare diseases. Herein, we discuss recent advances in biomedical knowledge mining applied to discovering therapeutics for rare diseases. We summarize current chemogenomics data of relevance to rare diseases and provide a perspective on the effectiveness of machine learning (ML) and biomedical knowledge graph mining in rare disease drug discovery. We illustrate the power of these methodologies using a chordoma case study. We expect that a broader application of knowledge graph mining and artificial intelligence (AI) approaches will expedite the discovery of viable drug candidates against both rare and common diseases.

摘要

传统的药物发现管道已被证明不适用于罕见病。在此,我们讨论了最近在生物医学知识挖掘方面的进展,这些进展应用于发现罕见病的治疗方法。我们总结了与罕见病相关的当前化学生物基因组学数据,并就机器学习 (ML) 和生物医学知识图谱挖掘在罕见病药物发现中的有效性提供了一些看法。我们使用 chordoma 案例研究来说明这些方法的强大功能。我们期望更广泛地应用知识图谱挖掘和人工智能 (AI) 方法将加速针对罕见病和常见病的可行药物候选物的发现。

相似文献

1
Knowledge-based approaches to drug discovery for rare diseases.基于知识的罕见病药物发现方法。
Drug Discov Today. 2022 Feb;27(2):490-502. doi: 10.1016/j.drudis.2021.10.014. Epub 2021 Oct 27.
2
3
New avenues in artificial-intelligence-assisted drug discovery.人工智能辅助药物发现的新途径。
Drug Discov Today. 2023 Apr;28(4):103516. doi: 10.1016/j.drudis.2023.103516. Epub 2023 Feb 2.
8
Application of artificial intelligence and machine learning in drug repurposing.人工智能和机器学习在药物重定位中的应用。
Prog Mol Biol Transl Sci. 2024;205:171-211. doi: 10.1016/bs.pmbts.2024.03.030. Epub 2024 Mar 31.
10
Building the future of drug discovery.打造药物研发的未来。
Drug Discov Today. 2021 Apr;26(4):863-864. doi: 10.1016/j.drudis.2021.01.032. Epub 2021 Feb 3.

引用本文的文献

3
Applications of artificial intelligence in drug discovery for neurological diseases.人工智能在神经疾病药物研发中的应用。
Neurotherapeutics. 2025 Jul;22(4):e00624. doi: 10.1016/j.neurot.2025.e00624. Epub 2025 Jun 17.
7

本文引用的文献

1
A call to arms against ultra-rare diseases.向超罕见疾病宣战。
Nat Biotechnol. 2021 Jun;39(6):671-677. doi: 10.1038/s41587-021-00945-0.
4
Informatics for Chemistry, Biology, and Biomedical Sciences.化学、生物学和生物医学科学信息学。
J Chem Inf Model. 2021 Jan 25;61(1):26-35. doi: 10.1021/acs.jcim.0c01301. Epub 2020 Dec 31.
6
Chemistry in Times of Artificial Intelligence.人工智能时代的化学。
Chemphyschem. 2020 Oct 16;21(20):2233-2242. doi: 10.1002/cphc.202000518. Epub 2020 Sep 28.
7
Skeletal tissue regulation by catalase overexpression in mitochondria.过表达过氧化氢酶对线粒体中骨骼组织的调节作用。
Am J Physiol Cell Physiol. 2020 Oct 1;319(4):C734-C745. doi: 10.1152/ajpcell.00068.2020. Epub 2020 Aug 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验