Suppr超能文献

特定连接类型偏差使均匀随机网络模型与皮层记录一致。

Connection-type-specific biases make uniform random network models consistent with cortical recordings.

作者信息

Tomm Christian, Avermann Michael, Petersen Carl, Gerstner Wulfram, Vogels Tim P

机构信息

School of Computer and Communication Sciences and School of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;

Laboratory of Sensory Processing, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland; and.

出版信息

J Neurophysiol. 2014 Oct 15;112(8):1801-14. doi: 10.1152/jn.00629.2013. Epub 2014 Jun 18.

Abstract

Uniform random sparse network architectures are ubiquitous in computational neuroscience, but the implicit hypothesis that they are a good representation of real neuronal networks has been met with skepticism. Here we used two experimental data sets, a study of triplet connectivity statistics and a data set measuring neuronal responses to channelrhodopsin stimuli, to evaluate the fidelity of thousands of model networks. Network architectures comprised three neuron types (excitatory, fast spiking, and nonfast spiking inhibitory) and were created from a set of rules that govern the statistics of the resulting connection types. In a high-dimensional parameter scan, we varied the degree distributions (i.e., how many cells each neuron connects with) and the synaptic weight correlations of synapses from or onto the same neuron. These variations converted initially uniform random and homogeneously connected networks, in which every neuron sent and received equal numbers of synapses with equal synaptic strength distributions, to highly heterogeneous networks in which the number of synapses per neuron, as well as average synaptic strength of synapses from or to a neuron were variable. By evaluating the impact of each variable on the network structure and dynamics, and their similarity to the experimental data, we could falsify the uniform random sparse connectivity hypothesis for 7 of 36 connectivity parameters, but we also confirmed the hypothesis in 8 cases. Twenty-one parameters had no substantial impact on the results of the test protocols we used.

摘要

均匀随机稀疏网络架构在计算神经科学中无处不在,但它们是真实神经元网络的良好表示这一隐含假设一直受到质疑。在这里,我们使用了两个实验数据集,一个是关于三联体连接统计的研究,另一个是测量神经元对通道视紫红质刺激反应的数据集,来评估数千个模型网络的保真度。网络架构由三种神经元类型(兴奋性、快速发放和非快速发放抑制性)组成,并根据一组规则创建,这些规则控制着所得连接类型的统计。在高维参数扫描中,我们改变了度分布(即每个神经元与多少个细胞连接)以及来自或连接到同一神经元的突触的突触权重相关性。这些变化将最初均匀随机且均匀连接的网络(其中每个神经元发送和接收相等数量的突触,且突触强度分布相等)转变为高度异质的网络,其中每个神经元的突触数量以及来自或到一个神经元的突触平均强度都是可变的。通过评估每个变量对网络结构和动态的影响,以及它们与实验数据的相似性,我们可以证伪36个连接参数中的7个的均匀随机稀疏连接假设,但我们也在8个案例中证实了该假设。21个参数对我们使用的测试协议结果没有实质性影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0d/4200009/439ebc7180ec/z9k0181425980001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验