Suppr超能文献

用于定量饮食评估的3D/2D模型到图像配准

3D/2D Model-to-Image Registration for Quantitative Dietary Assessment.

作者信息

Chen Hsin-Chen, Jia Wenyan, Li Zhaoxin, Sun Yung-Nien, Sun Mingui

机构信息

Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan, R.O.C ; Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.

Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.

出版信息

Proc IEEE Annu Northeast Bioeng Conf. 2012 Dec 31;2012:95-96. doi: 10.1109/NEBC.2012.6206979.

Abstract

Image-based dietary assessment is important for health monitoring and management because it can provide quantitative and objective information, such as food volume, nutrition type, and calorie intake. In this paper, a new framework, 3D/2D model-to-image registration, is presented for estimating food volume from a single-view 2D image containing a reference object (i.e., a circular dining plate). First, the food is segmented from the background image based on Otsu's thresholding and morphological operations. Next, the food volume is obtained from a user-selected, 3D shape model. The position, orientation and scale of the model are optimized by a model-to-image registration process. Then, the circular plate in the image is fitted and its spatial information is used as constraints for solving the registration problem. Our method takes the global contour information of the shape model into account to obtain a reliable food volume estimate. Experimental results using regularly shaped test objects and realistically shaped food models with known volumes both demonstrate the effectiveness of our method.

摘要

基于图像的饮食评估对于健康监测和管理很重要,因为它可以提供定量和客观的信息,例如食物体积、营养类型和卡路里摄入量。本文提出了一种新的框架,即3D/2D模型到图像配准,用于从包含参考物体(即圆形餐盘)的单视图2D图像中估计食物体积。首先,基于大津阈值法和形态学操作从背景图像中分割出食物。接下来,从用户选择的3D形状模型中获取食物体积。通过模型到图像的配准过程优化模型的位置、方向和比例。然后,拟合图像中的圆形餐盘,并将其空间信息用作解决配准问题的约束条件。我们的方法考虑了形状模型的全局轮廓信息,以获得可靠的食物体积估计。使用规则形状的测试物体和已知体积的逼真形状食物模型的实验结果都证明了我们方法的有效性。

相似文献

1
3D/2D Model-to-Image Registration for Quantitative Dietary Assessment.用于定量饮食评估的3D/2D模型到图像配准
Proc IEEE Annu Northeast Bioeng Conf. 2012 Dec 31;2012:95-96. doi: 10.1109/NEBC.2012.6206979.
3
Estimating Amount of Food in a Circular Dining Bowl from a Single Image.从单张图像估计圆形餐碗中的食物量。
Madima 23 (2023). 2023 Oct;2023:1-9. doi: 10.1145/3607828.3617789. Epub 2023 Oct 29.
7
Robust 2D Otsu's Algorithm for Uneven Illumination Image Segmentation.用于非均匀光照图像分割的鲁棒二维 Otsu 算法。
Comput Intell Neurosci. 2020 Aug 11;2020:5047976. doi: 10.1155/2020/5047976. eCollection 2020.
10
Computer assisted determination of acetabular cup orientation using 2D-3D image registration.使用 2D-3D 图像配准技术辅助确定髋臼杯方位。
Int J Comput Assist Radiol Surg. 2010 Sep;5(5):437-47. doi: 10.1007/s11548-010-0407-x. Epub 2010 Feb 24.

引用本文的文献

4
THE USE OF CO-OCCURRENCE PATTERNS IN SINGLE IMAGE BASED FOOD PORTION ESTIMATION.基于单图像的食物份量估计中共现模式的应用。
IEEE Glob Conf Signal Inf Process. 2017 Nov;2017:462-466. doi: 10.1109/GlobalSIP.2017.8308685. Epub 2018 Mar 8.
6
Advances and Controversies in Diet and Physical Activity Measurement in Youth.青少年饮食和身体活动测量的进展与争议。
Am J Prev Med. 2018 Oct;55(4):e81-e91. doi: 10.1016/j.amepre.2018.06.012. Epub 2018 Aug 19.
8
Image-Based Food Volume Estimation.基于图像的食物体积估计
CEA13 (2013). 2013 Oct;2013:75-80. doi: 10.1145/2506023.2506037.
9
MODEL-BASED FOOD VOLUME ESTIMATION USING 3D POSE.基于模型的三维姿态食物体积估计
Proc Int Conf Image Proc. 2013 Sep;2013:2534-2538. doi: 10.1109/ICIP.2013.6738522. Epub 2014 Feb 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验