Suppr超能文献

短波红外高光谱成像与深度学习在饮食评估中的潜力:预测封闭式三明治馅料的原型研究

The potential of short-wave infrared hyperspectral imaging and deep learning for dietary assessment: a prototype on predicting closed sandwiches fillings.

作者信息

Kok Esther, Chauhan Aneesh, Tufano Michele, Feskens Edith, Camps Guido

机构信息

Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands.

Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands.

出版信息

Front Nutr. 2025 Jan 15;11:1520674. doi: 10.3389/fnut.2024.1520674. eCollection 2024.

Abstract

INTRODUCTION

Accurate measurement of dietary intake without interfering in natural eating habits is a long-standing problem in nutritional epidemiology. We explored the applicability of hyperspectral imaging and machine learning for dietary assessment of home-prepared meals, by building a proof-of-concept, which automatically detects food ingredients inside closed sandwiches.

METHODS

Individual spectra were selected from 24 hyperspectral images of assembled closed sandwiches, measured in a spectral range of 1116.14 nm to 1670.62 nm over 108 bands, pre-processed with Standard Normal Variate filtering, derivatives, and subsampling, and fed into multiple algorithms, among which PLS-DA, multiple classifiers, and a simple neural network.

RESULTS

The resulting best performing models had an accuracy score of ~80% for predicting type of bread, ~60% for butter, and ~ 28% for filling type. We see that the main struggle in predicting the fillings lies with the spreadable fillings, meaning the model may be focusing on structural aspects and not nutritional composition.

DISCUSSION

Further analysis on non-homogeneous mixed food items, using computer vision techniques, will contribute toward a generalizable system. While there are still significant technical challenges to overcome before such a system can be routinely implemented in studies of free-living subjects, we believe it holds promise as a future tool for nutrition research and population intake monitoring.

摘要

引言

在不干扰自然饮食习惯的情况下准确测量饮食摄入量是营养流行病学中一个长期存在的问题。我们通过构建一个概念验证,探索了高光谱成像和机器学习在家庭自制餐食饮食评估中的适用性,该概念验证可自动检测封闭三明治内的食物成分。

方法

从24张组装好的封闭三明治的高光谱图像中选择个体光谱,在108个波段上于1116.14纳米至1670.62纳米的光谱范围内进行测量,用标准正态变量滤波、导数和二次采样进行预处理,然后输入多种算法,其中包括偏最小二乘判别分析、多个分类器和一个简单神经网络。

结果

所得表现最佳的模型在预测面包类型方面的准确率约为80%,黄油方面约为60%,馅料类型方面约为28%。我们发现预测馅料的主要困难在于可涂抹馅料,这意味着模型可能关注的是结构方面而非营养成分。

讨论

使用计算机视觉技术对非均匀混合食品进行进一步分析,将有助于建立一个可推广的系统。虽然在这样一个系统能够在自由生活受试者的研究中常规实施之前,仍有重大技术挑战需要克服,但我们相信它有望成为未来营养研究和人群摄入量监测的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12f8/11784147/695ff217091c/fnut-11-1520674-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验