Suppr超能文献

连续的全身体三维运动学记录贯穿整个啮齿动物行为范围。

Continuous Whole-Body 3D Kinematic Recordings across the Rodent Behavioral Repertoire.

机构信息

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.

Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA.

出版信息

Neuron. 2021 Feb 3;109(3):420-437.e8. doi: 10.1016/j.neuron.2020.11.016. Epub 2020 Dec 18.

Abstract

In mammalian animal models, high-resolution kinematic tracking is restricted to brief sessions in constrained environments, limiting our ability to probe naturalistic behaviors and their neural underpinnings. To address this, we developed CAPTURE (Continuous Appendicular and Postural Tracking Using Retroreflector Embedding), a behavioral monitoring system that combines motion capture and deep learning to continuously track the 3D kinematics of a rat's head, trunk, and limbs for week-long timescales in freely behaving animals. CAPTURE realizes 10- to 100-fold gains in precision and robustness compared with existing convolutional network approaches to behavioral tracking. We demonstrate CAPTURE's ability to comprehensively profile the kinematics and sequential organization of natural rodent behavior, its variation across individuals, and its perturbation by drugs and disease, including identifying perseverative grooming states in a rat model of fragile X syndrome. CAPTURE significantly expands the range of behaviors and contexts that can be quantitatively investigated, opening the door to a new understanding of natural behavior and its neural basis.

摘要

在哺乳动物动物模型中,高分辨率运动跟踪仅限于在受限环境中的短暂会话,限制了我们探究自然行为及其神经基础的能力。为了解决这个问题,我们开发了 CAPTURE(使用反射器嵌入进行连续附肢和姿势跟踪),这是一种行为监测系统,它结合了运动捕捉和深度学习,可连续跟踪大鼠头部、躯干和四肢的 3D 运动学,在自由行为动物中可长达一周的时间尺度。与现有的行为跟踪卷积网络方法相比,CAPTURE 在精度和稳健性方面提高了 10 到 100 倍。我们证明了 CAPTURE 能够全面分析自然啮齿动物行为的运动学和顺序组织、个体之间的差异以及药物和疾病的干扰,包括在脆性 X 综合征大鼠模型中识别持续梳理状态。CAPTURE 大大扩展了可以进行定量研究的行为和上下文的范围,为深入了解自然行为及其神经基础打开了大门。

相似文献

2
M-Track: A New Software for Automated Detection of Grooming Trajectories in Mice.M-Track:一种用于自动检测小鼠梳理轨迹的新软件。
PLoS Comput Biol. 2016 Sep 16;12(9):e1005115. doi: 10.1371/journal.pcbi.1005115. eCollection 2016 Sep.
4
A kinematic study of skilled reaching movement in rat.大鼠熟练伸手运动的运动学研究。
J Neurosci Methods. 2019 Dec 1;328:108404. doi: 10.1016/j.jneumeth.2019.108404. Epub 2019 Aug 21.
7
Leaving flatland: Advances in 3D behavioral measurement.走出平原:三维行为测量的进展。
Curr Opin Neurobiol. 2022 Apr;73:102522. doi: 10.1016/j.conb.2022.02.002. Epub 2022 Apr 19.
9
A freely-moving monkey treadmill model.一种自由活动的猴子跑步机模型。
J Neural Eng. 2014 Aug;11(4):046020. doi: 10.1088/1741-2560/11/4/046020. Epub 2014 Jul 4.

引用本文的文献

6
Statistical signature of subtle behavioral changes in large-scale assays.大规模检测中细微行为变化的统计特征
PLoS Comput Biol. 2025 Apr 21;21(4):e1012990. doi: 10.1371/journal.pcbi.1012990. eCollection 2025 Apr.
8
Mapping the landscape of social behavior.描绘社会行为的全貌。
Cell. 2025 Apr 17;188(8):2249-2266.e23. doi: 10.1016/j.cell.2025.01.044. Epub 2025 Mar 4.

本文引用的文献

2
A map of object space in primate inferotemporal cortex.灵长类动物下颞叶皮层的客体空间图谱。
Nature. 2020 Jul;583(7814):103-108. doi: 10.1038/s41586-020-2350-5. Epub 2020 Jun 3.
4
6
Unsupervised identification of the internal states that shape natural behavior.无监督识别塑造自然行为的内部状态。
Nat Neurosci. 2019 Dec;22(12):2040-2049. doi: 10.1038/s41593-019-0533-x. Epub 2019 Nov 25.
9
Fast animal pose estimation using deep neural networks.基于深度神经网络的快速动物姿势估计。
Nat Methods. 2019 Jan;16(1):117-125. doi: 10.1038/s41592-018-0234-5. Epub 2018 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验