Suppr超能文献

基于水肿的弥漫性低级别胶质瘤模型:在放疗临床病例中的应用

Oedema-based model for diffuse low-grade gliomas: application to clinical cases under radiotherapy.

作者信息

Badoual M, Gerin C, Deroulers C, Grammaticos B, Llitjos J-F, Oppenheim C, Varlet P, Pallud J

机构信息

Laboratoire IMNC, UMR 8165, CNRS, Univ. Paris-Sud, 91405, Orsay, France; Univ Paris Diderot, 75013, Paris, France.

出版信息

Cell Prolif. 2014 Aug;47(4):369-80. doi: 10.1111/cpr.12114. Epub 2014 Jun 19.

Abstract

OBJECTIVES

Diffuse low-grade gliomas are characterized by slow growth. Despite appropriate treatment, they change inexorably into more aggressive forms, jeopardizing the patient's life. Optimizing treatments, for example with the use of mathematical modelling, could help to prevent tumour regrowth and anaplastic transformation. Here, we present a model of the effect of radiotherapy on such tumours. Our objective is to explain observed delay of tumour regrowth following radiotherapy and to predict its duration.

MATERIALS AND METHODS

We have used a migration-proliferation model complemented by an equation describing appearance and draining of oedema. The model has been applied to clinical data of tumour radius over time, for a population of 28 patients.

RESULTS

We were able to show that draining of oedema accounts for regrowth delay after radiotherapy and have been able to fit the clinical data in a robust way. The model predicts strong correlation between high proliferation coefficient and low progression-free gain of lifetime, due to radiotherapy among the patients, in agreement with clinical studies. We argue that, with reasonable assumptions, it is possible to predict (precision ~20%) regrowth delay after radiotherapy and the gain of lifetime due to radiotherapy.

CONCLUSIONS

Our oedema-based model provides an early estimation of individual duration of tumour response to radiotherapy and thus, opens the door to the possibility of personalized medicine.

摘要

目的

弥漫性低级别胶质瘤的特点是生长缓慢。尽管进行了适当治疗,但它们仍会不可避免地转变为更具侵袭性的形式,危及患者生命。优化治疗方法,例如使用数学建模,可能有助于防止肿瘤复发和间变转化。在此,我们提出一种放疗对这类肿瘤影响的模型。我们的目标是解释放疗后观察到的肿瘤复发延迟现象,并预测其持续时间。

材料与方法

我们使用了一个迁移 - 增殖模型,并辅以一个描述水肿出现和消退的方程。该模型已应用于28名患者群体的肿瘤半径随时间变化的临床数据。

结果

我们能够证明水肿消退是放疗后肿瘤复发延迟的原因,并且能够以稳健的方式拟合临床数据。该模型预测,在患者中,由于放疗,高增殖系数与低无进展生存期获益之间存在强相关性,这与临床研究结果一致。我们认为,在合理假设的情况下,可以预测(精度约为20%)放疗后的肿瘤复发延迟以及放疗带来的生存期获益。

结论

我们基于水肿的模型提供了对放疗后肿瘤个体反应持续时间的早期估计,从而为个性化医疗开辟了可能性。

相似文献

2
Predicting regrowth of low-grade gliomas after radiotherapy.预测放疗后低级别胶质瘤的复发。
PLoS Comput Biol. 2023 Mar 31;19(3):e1011002. doi: 10.1371/journal.pcbi.1011002. eCollection 2023 Mar.

引用本文的文献

2
Overcoming chemotherapy resistance in low-grade gliomas: A computational approach.克服低级别脑胶质瘤的化疗耐药性:一种计算方法。
PLoS Comput Biol. 2023 Nov 20;19(11):e1011208. doi: 10.1371/journal.pcbi.1011208. eCollection 2023 Nov.
3
Predicting regrowth of low-grade gliomas after radiotherapy.预测放疗后低级别胶质瘤的复发。
PLoS Comput Biol. 2023 Mar 31;19(3):e1011002. doi: 10.1371/journal.pcbi.1011002. eCollection 2023 Mar.

本文引用的文献

9
Improving the time-machine: estimating date of birth of grade II gliomas.改进时间机器:估算 II 级胶质瘤的出生日期。
Cell Prolif. 2012 Feb;45(1):76-90. doi: 10.1111/j.1365-2184.2011.00790.x. Epub 2011 Dec 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验