Suppr超能文献

脑肿瘤动物模型中全脑放疗后活体胶质瘤反应的生物物理建模。

Biophysical Modeling of In Vivo Glioma Response After Whole-Brain Radiation Therapy in a Murine Model of Brain Cancer.

机构信息

Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, Texas.

Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina; Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina.

出版信息

Int J Radiat Oncol Biol Phys. 2018 Apr 1;100(5):1270-1279. doi: 10.1016/j.ijrobp.2017.12.004. Epub 2017 Dec 13.

Abstract

PURPOSE

To develop and investigate a set of biophysical models based on a mechanically coupled reaction-diffusion model of the spatiotemporal evolution of tumor growth after radiation therapy.

METHODS AND MATERIALS

Post-radiation therapy response is modeled using a cell death model (M), a reduced proliferation rate model (M), and cell death and reduced proliferation model (M). To evaluate each model, rats (n = 12) with C6 gliomas were imaged with diffusion-weighted magnetic resonance imaging (MRI) and contrast-enhanced MRI at 7 time points over 2 weeks. Rats received either 20 or 40 Gy between the third and fourth imaging time point. Diffusion-weighted MRI was used to estimate tumor cell number within enhancing regions in contrast-enhanced MRI data. Each model was fit to the spatiotemporal evolution of tumor cell number from time point 1 to time point 5 to estimate model parameters. The estimated model parameters were then used to predict tumor growth at the final 2 imaging time points. The model prediction was evaluated by calculating the error in tumor volume estimates, average surface distance, and voxel-based cell number.

RESULTS

For both the rats treated with either 20 or 40 Gy, significantly lower error in tumor volume, average surface distance, and voxel-based cell number was observed for the M and M models compared with the M model. The M model fit, however, had significantly lower sum squared error compared with the M and M models.

CONCLUSIONS

The results of this study indicate that for both doses, the M and M models result in accurate predictions of tumor growth, whereas the M model poorly describes response to radiation therapy.

摘要

目的

基于肿瘤放射治疗后时空演变的力学耦联反应-扩散模型,开发并研究一套生物物理模型。

方法与材料

采用细胞死亡模型(M)、增殖率降低模型(M)和细胞死亡与增殖率降低模型(M)来模拟放射治疗后的反应。为了评估每个模型,对接受 C6 神经胶质瘤的大鼠在 2 周内的 7 个时间点进行扩散加权磁共振成像(MRI)和对比增强 MRI 扫描。大鼠在第 3 和第 4 次成像时间点之间接受 20 或 40 Gy 的照射。扩散加权 MRI 用于根据对比增强 MRI 数据中增强区域内的肿瘤细胞数量来估计肿瘤细胞数量。将每个模型拟合到时间点 1 到时间点 5 的肿瘤细胞数量的时空演变中,以估计模型参数。然后使用估计的模型参数来预测最后 2 个成像时间点的肿瘤生长情况。通过计算肿瘤体积估计值、平均表面距离和体素细胞数的误差来评估模型预测。

结果

对于接受 20 或 40 Gy 照射的大鼠,M 和 M 模型的肿瘤体积、平均表面距离和体素细胞数的误差明显低于 M 模型。然而,M 模型的拟合具有明显更低的平方和误差,优于 M 和 M 模型。

结论

本研究结果表明,对于两种剂量,M 和 M 模型都能准确预测肿瘤生长,而 M 模型则不能很好地描述放射治疗的反应。

相似文献

引用本文的文献

本文引用的文献

9
Radiation therapy of glioblastoma.胶质母细胞瘤的放射治疗。
Cancer Treat Res. 2015;163:49-73. doi: 10.1007/978-3-319-12048-5_4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验