Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom, and Laboratoire des Systèmes Perceptifs and Département d'Études Cognitives, École Normale Supérieure, 75005 Paris, France
J Neurosci. 2014 Jun 18;34(25):8449-61. doi: 10.1523/JNEUROSCI.5434-13.2014.
Motion detection is a fundamental property of the visual system. The gold standard for studying and understanding this function is the motion energy model. This computational tool relies on spatiotemporally selective filters that capture the change in spatial position over time afforded by moving objects. Although the filters are defined in space-time, their human counterparts have never been studied in their native spatiotemporal space but rather in the corresponding frequency domain. When this frequency description is back-projected to spatiotemporal description, not all characteristics of the underlying process are retained, leaving open the possibility that important properties of human motion detection may have remained unexplored. We derived descriptors of motion detectors in native space-time, and discovered a large unexpected dynamic structure involving a >2× change in detector amplitude over the first ∼100 ms. This property is not predicted by the energy model, generalizes across the visual field, and is robust to adaptation; however, it is silenced by surround inhibition and is contrast dependent. We account for all results by extending the motion energy model to incorporate a small network that supports feedforward spread of activation along the motion trajectory via a simple gain-control circuit.
运动检测是视觉系统的基本属性。研究和理解这一功能的金标准是运动能量模型。这个计算工具依赖于时空选择性滤波器,这些滤波器可以捕捉到移动物体随时间变化的空间位置。尽管这些滤波器是在时空域中定义的,但它们的人类对应物从未在其固有时空域中进行过研究,而是在相应的频域中进行过研究。当这种频率描述被反向投影到时空描述时,并不是所有基础过程的特征都被保留下来,这使得人类运动检测的重要特性可能仍然没有被探索。我们在原生时空域中推导出了运动探测器的描述符,并发现了一个大的意外动态结构,涉及在最初的 100 毫秒内探测器幅度的 >2 倍变化。这个特性是能量模型无法预测的,它在整个视野中都有体现,并且对适应具有鲁棒性;然而,它被周围抑制所抑制,并且依赖于对比度。我们通过扩展运动能量模型来解释所有的结果,该模型包含一个小的网络,通过一个简单的增益控制电路,支持沿着运动轨迹的激活的前馈传播。