Suppr超能文献

视网膜细胞类型中神经元数量的独立基因组控制。

Independent genomic control of neuronal number across retinal cell types.

作者信息

Keeley Patrick W, Whitney Irene E, Madsen Nils R, St John Ace J, Borhanian Sarra, Leong Stephanie A, Williams Robert W, Reese Benjamin E

机构信息

Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.

Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.

出版信息

Dev Cell. 2014 Jul 14;30(1):103-9. doi: 10.1016/j.devcel.2014.05.003. Epub 2014 Jun 19.

Abstract

The sizes of different neuronal populations within the CNS are precisely controlled, but whether neuronal number is coordinated between cell types is unknown. We examined the covariance structure of 12 different retinal cell types across 30 genetically distinct lines of mice, finding minimal covariation when comparing synaptically connected or developmentally related cell types. Variation mapped to one or more genomic loci for each cell type, but rarely were these shared, indicating minimal genetic coregulation of final number. Multiple genes, therefore, participate in the specification of the size of every population of retinal neuron, yet genetic variants work largely independent of one another during development to modulate those numbers, yielding substantial variability in the convergence ratios between pre- and postsynaptic populations. Density-dependent cellular interactions in the outer plexiform layer overcome this variability to ensure the formation of neuronal circuits that maintain constant retinal coverage and complete afferent sampling.

摘要

中枢神经系统内不同神经元群体的大小受到精确控制,但尚不清楚细胞类型之间的神经元数量是否协调。我们研究了30个基因不同品系小鼠中12种不同视网膜细胞类型的协方差结构,发现比较突触连接或发育相关的细胞类型时,协方差极小。每种细胞类型的变异映射到一个或多个基因组位点,但这些位点很少共享,这表明最终数量的遗传共调控作用极小。因此,多个基因参与了每个视网膜神经元群体大小的确定,但在发育过程中,基因变异在很大程度上彼此独立起作用来调节这些数量,导致突触前和突触后群体之间的汇聚比率存在很大差异。外网状层中密度依赖性细胞相互作用克服了这种变异性,以确保形成维持恒定视网膜覆盖和完整传入采样的神经元回路。

相似文献

1
Independent genomic control of neuronal number across retinal cell types.
Dev Cell. 2014 Jul 14;30(1):103-9. doi: 10.1016/j.devcel.2014.05.003. Epub 2014 Jun 19.
2
Interrelationships between Cellular Density, Mosaic Patterning, and Dendritic Coverage of VGluT3 Amacrine Cells.
J Neurosci. 2021 Jan 6;41(1):103-117. doi: 10.1523/JNEUROSCI.1027-20.2020. Epub 2020 Nov 18.
3
Genomic control of neuronal demographics in the retina.
Prog Retin Eye Res. 2016 Nov;55:246-259. doi: 10.1016/j.preteyeres.2016.07.003. Epub 2016 Aug 1.
4
Multiple genes on chromosome 7 regulate dopaminergic amacrine cell number in the mouse retina.
Invest Ophthalmol Vis Sci. 2009 May;50(5):1996-2003. doi: 10.1167/iovs.08-2556. Epub 2009 Jan 24.
5
Genomic Control of Retinal Cell Number: Challenges, Protocol, and Results.
Methods Mol Biol. 2017;1488:365-390. doi: 10.1007/978-1-4939-6427-7_17.
6
Sox2 regulates cholinergic amacrine cell positioning and dendritic stratification in the retina.
J Neurosci. 2014 Jul 23;34(30):10109-21. doi: 10.1523/JNEUROSCI.0415-14.2014.
9
Genetic modulation of horizontal cell number in the mouse retina.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9697-702. doi: 10.1073/pnas.1103253108. Epub 2011 May 16.
10
Shank 2 expression coincides with neuronal differentiation in the developing retina.
Exp Mol Med. 2009 Apr 30;41(4):236-42. doi: 10.3858/emm.2009.41.4.026.

引用本文的文献

1
Maf1 controls retinal neuron number by both RNA Pol III- and Pol II-dependent mechanisms.
iScience. 2023 Nov 23;26(12):108544. doi: 10.1016/j.isci.2023.108544. eCollection 2023 Dec 15.
2
Retinal VIP-amacrine cells: their development, structure, and function.
Eye (Lond). 2024 Apr;38(6):1065-1076. doi: 10.1038/s41433-023-02844-x. Epub 2023 Dec 8.
3
Is Critical for AII Amacrine Cell Production: Selective Bipolar Cell Dependencies and Diminished ERG.
J Neurosci. 2023 Dec 6;43(49):8367-8384. doi: 10.1523/JNEUROSCI.1099-23.2023.
4
Quantitative trait loci on chromosomes 9 and 19 modulate AII amacrine cell number in the mouse retina.
Front Neurosci. 2023 Feb 2;17:1078168. doi: 10.3389/fnins.2023.1078168. eCollection 2023.
5
Neurog2 regulates Isl1 to modulate horizontal cell number.
Development. 2023 Jan 1;150(1). doi: 10.1242/dev.201315. Epub 2023 Jan 5.
6
Cell numbers, cell ratios, and developmental plasticity in the rod pathway of the mouse retina.
J Anat. 2023 Aug;243(2):204-222. doi: 10.1111/joa.13653. Epub 2022 Mar 15.
7
Trilogy Development of Proopiomelanocortin Neurons From Embryonic to Adult Stages in the Mice Retina.
Front Cell Dev Biol. 2021 Oct 5;9:718851. doi: 10.3389/fcell.2021.718851. eCollection 2021.
8
Primary Cilia in Amacrine Cells in Retinal Development.
Invest Ophthalmol Vis Sci. 2021 Jul 1;62(9):15. doi: 10.1167/iovs.62.9.15.
9
Commonalities of optic nerve injury and glaucoma-induced neurodegeneration: Insights from transcriptome-wide studies.
Exp Eye Res. 2021 Jun;207:108571. doi: 10.1016/j.exer.2021.108571. Epub 2021 Apr 15.
10
Interrelationships between Cellular Density, Mosaic Patterning, and Dendritic Coverage of VGluT3 Amacrine Cells.
J Neurosci. 2021 Jan 6;41(1):103-117. doi: 10.1523/JNEUROSCI.1027-20.2020. Epub 2020 Nov 18.

本文引用的文献

1
Intrinsic control of mammalian retinogenesis.
Cell Mol Life Sci. 2013 Jul;70(14):2519-32. doi: 10.1007/s00018-012-1183-2. Epub 2012 Oct 12.
2
Intrinsically determined cell death of developing cortical interneurons.
Nature. 2012 Nov 1;491(7422):109-13. doi: 10.1038/nature11523. Epub 2012 Oct 7.
4
Cell fate determination in the vertebrate retina.
Trends Neurosci. 2012 Sep;35(9):565-73. doi: 10.1016/j.tins.2012.05.004. Epub 2012 Jun 15.
5
Homotypic regulation of neuronal morphology and connectivity in the mouse retina.
J Neurosci. 2011 Oct 5;31(40):14126-33. doi: 10.1523/JNEUROSCI.2844-11.2011.
6
Development and evolution of the human neocortex.
Cell. 2011 Jul 8;146(1):18-36. doi: 10.1016/j.cell.2011.06.030.
7
Genetic modulation of horizontal cell number in the mouse retina.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9697-702. doi: 10.1073/pnas.1103253108. Epub 2011 May 16.
9
A QTL on chromosome 10 modulates cone photoreceptor number in the mouse retina.
Invest Ophthalmol Vis Sci. 2011 May 16;52(6):3228-36. doi: 10.1167/iovs.10-6693.
10
Complexity of retinal cone bipolar cells.
Prog Retin Eye Res. 2010 Jul;29(4):272-83. doi: 10.1016/j.preteyeres.2010.03.005. Epub 2010 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验