Suppr超能文献

自动因子切片采样

Automated Factor Slice Sampling.

作者信息

Tibbits Matthew M, Groendyke Chris, Haran Murali, Liechty John C

机构信息

Department of Statistics, Pennsylvania State University.

Department of Mathematics, Robert Morris University.

出版信息

J Comput Graph Stat. 2014;23(2):543-563. doi: 10.1080/10618600.2013.791193.

Abstract

Markov chain Monte Carlo (MCMC) algorithms offer a very general approach for sampling from arbitrary distributions. However, designing and tuning MCMC algorithms for each new distribution, can be challenging and time consuming. It is particularly difficult to create an efficient sampler when there is strong dependence among the variables in a multivariate distribution. We describe a two-pronged approach for constructing efficient, automated MCMC algorithms: (1) we propose the "factor slice sampler", a generalization of the univariate slice sampler where we treat the selection of a coordinate basis (factors) as an additional tuning parameter, and (2) we develop an approach for automatically selecting tuning parameters in order to construct an efficient factor slice sampler. In addition to automating the factor slice sampler, our tuning approach also applies to the standard univariate slice samplers. We demonstrate the efficiency and general applicability of our automated MCMC algorithm with a number of illustrative examples.

摘要

马尔可夫链蒙特卡罗(MCMC)算法提供了一种从任意分布中进行采样的非常通用的方法。然而,为每个新分布设计和调整MCMC算法可能具有挑战性且耗时。当多元分布中的变量之间存在强相关性时,创建一个高效的采样器尤其困难。我们描述了一种构建高效、自动化MCMC算法的双管齐下的方法:(1)我们提出了“因子切片采样器”,它是单变量切片采样器的推广,我们将坐标基(因子)的选择视为一个额外的调整参数;(2)我们开发了一种自动选择调整参数的方法,以构建一个高效的因子切片采样器。除了使因子切片采样器自动化外,我们的调整方法也适用于标准的单变量切片采样器。我们通过一些示例展示了我们的自动化MCMC算法的效率和普遍适用性。

相似文献

1
Automated Factor Slice Sampling.自动因子切片采样
J Comput Graph Stat. 2014;23(2):543-563. doi: 10.1080/10618600.2013.791193.
2
Gradient-free MCMC methods for dynamic causal modelling.用于动态因果建模的无梯度马尔可夫链蒙特卡罗方法。
Neuroimage. 2015 May 15;112:375-381. doi: 10.1016/j.neuroimage.2015.03.008. Epub 2015 Mar 14.
6
Estimating CDMs Using the Slice-Within-Gibbs Sampler.使用吉布斯切片采样器估计CDM
Front Psychol. 2020 Sep 25;11:2260. doi: 10.3389/fpsyg.2020.02260. eCollection 2020.
10
A general construction for parallelizing Metropolis-Hastings algorithms.一种并行化 Metropolis-Hastings 算法的通用构造。
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17408-13. doi: 10.1073/pnas.1408184111. Epub 2014 Nov 24.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验