Suppr超能文献

构建用于脑和脊髓组织工程的生物相容性水凝胶。

Building biocompatible hydrogels for tissue engineering of the brain and spinal cord.

作者信息

Aurand Emily R, Wagner Jennifer, Lanning Craig, Bjugstad Kimberly B

机构信息

Neuroscience Program and Department of Pediatrics, University of Colorado-Denver, Anschutz Medical Campus, Mail Stop 8313, 12800 E. 19th Avenue, Aurora, CO 80045, USA.

Department of Bioengineering, University of Colorado-Denver, Anschutz Medical Campus, Mail Stop 8607, 12700 E. 19th Avenue, Aurora, CO 80045, USA.

出版信息

J Funct Biomater. 2012 Nov 15;3(4):839-63. doi: 10.3390/jfb3040839.

Abstract

Tissue engineering strategies employing biomaterials have made great progress in the last few decades. However, the tissues of the brain and spinal cord pose unique challenges due to a separate immune system and their nature as soft tissue. Because of this, neural tissue engineering for the brain and spinal cord may require re-establishing biocompatibility and functionality of biomaterials that have previously been successful for tissue engineering in the body. The goal of this review is to briefly describe the distinctive properties of the central nervous system, specifically the neuroimmune response, and to describe the factors which contribute to building polymer hydrogels compatible with this tissue. These factors include polymer chemistry, polymerization and degradation, and the physical and mechanical properties of the hydrogel. By understanding the necessities in making hydrogels biocompatible with tissue of the brain and spinal cord, tissue engineers can then functionalize these materials for repairing and replacing tissue in the central nervous system.

摘要

在过去几十年中,采用生物材料的组织工程策略取得了巨大进展。然而,由于独特的免疫系统以及作为软组织的性质,脑和脊髓组织带来了独特的挑战。因此,用于脑和脊髓的神经组织工程可能需要重新建立生物材料的生物相容性和功能,这些生物材料此前在体内组织工程中已取得成功。本综述的目的是简要描述中枢神经系统的独特特性,特别是神经免疫反应,并描述有助于构建与该组织相容的聚合物水凝胶的因素。这些因素包括聚合物化学、聚合和降解,以及水凝胶的物理和机械性能。通过了解使水凝胶与脑和脊髓组织生物相容的必要性,组织工程师随后可以对这些材料进行功能化,以修复和替换中枢神经系统中的组织。

相似文献

4
Aligned hydrogel tubes guide regeneration following spinal cord injury.水凝胶管对齐引导脊髓损伤后的再生。
Acta Biomater. 2019 Mar 1;86:312-322. doi: 10.1016/j.actbio.2018.12.052. Epub 2019 Jan 2.
7
Biocompatible hydrogels in spinal cord injury repair.用于脊髓损伤修复的生物相容性水凝胶
Physiol Res. 2008;57 Suppl 3:S121-S132. doi: 10.33549/physiolres.931606. Epub 2008 May 13.
8
Hydrogels derived from central nervous system extracellular matrix.源自中枢神经系统细胞外基质的水凝胶。
Biomaterials. 2013 Jan;34(4):1033-40. doi: 10.1016/j.biomaterials.2012.10.062. Epub 2012 Nov 16.
10
Nanotechnology for the Treatment of Spinal Cord Injury.纳米技术治疗脊髓损伤。
Tissue Eng Part B Rev. 2021 Aug;27(4):353-365. doi: 10.1089/ten.TEB.2020.0188. Epub 2021 Jan 22.

引用本文的文献

5
Brain organoid formation on decellularized porcine brain ECM hydrogels.去细胞猪脑 ECM 水凝胶上的类脑器官形成。
PLoS One. 2021 Jan 28;16(1):e0245685. doi: 10.1371/journal.pone.0245685. eCollection 2021.
8
Bioprinting: From Tissue and Organ Development to Models.生物打印:从组织和器官发育到模型。
Chem Rev. 2020 Oct 14;120(19):10547-10607. doi: 10.1021/acs.chemrev.9b00789. Epub 2020 May 14.

本文引用的文献

5
Multiple sclerosis.多发性硬化症。
Adv Exp Med Biol. 2012;724:222-38. doi: 10.1007/978-1-4614-0653-2_17.
6
Constitutive model for brain tissue under finite compression.有限压缩下脑组织的本构模型。
J Biomech. 2012 Feb 23;45(4):642-6. doi: 10.1016/j.jbiomech.2011.12.023. Epub 2012 Jan 24.
8
Design concepts and strategies for tissue engineering scaffolds.组织工程支架的设计理念与策略。
Biotechnol Appl Biochem. 2011 Nov-Dec;58(6):423-38. doi: 10.1002/bab.60. Epub 2011 Nov 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验