Santos-Beneit Fernando, Fernández-Martínez Lorena T, Rodríguez-García Antonio, Martín-Martín Seomara, Ordóñez-Robles María, Yagüe Paula, Manteca Angel, Martín Juan F
Instituto de Biotecnología de León (INBIOTEC), Avda. Real 1, 24006 León, Spain.
Future Microbiol. 2014;9(5):603-22. doi: 10.2217/fmb.14.21.
The main objective of this study is to understand the mechanism of vancomycin resistance in a Streptomyces coelicolor disrupted mutant highly resistant to vancomycin.
MATERIALS & METHODS: Different techniques have been performed in the study including gene disruption, primer extension, antibiotic susceptibility tests, electron microscopy, confocal microscopy, cell wall analysis and microarrays.
During the phenotypical characterization of mutant strains affected in phosphate-regulated genes of unknown function, we found that the S. coelicolor SCO2594 disrupted mutant was highly resistant to vancomycin and had other phenotypic alterations such as antibiotic overproduction, impaired growth and reduction of phosphate cell wall content. Transcriptomic studies with this mutant indicated a relationship between vancomycin resistance and cell wall stress.
We identified a S. coelicolor mutant highly resistant to vancomycin in both high and low phosphate media. In addition to Van proteins, others such as WhiB or SigE appear to be involved in this regulatory mechanism.
本研究的主要目的是了解天蓝色链霉菌中对万古霉素高度耐药的破坏突变体的万古霉素耐药机制。
本研究采用了多种技术,包括基因破坏、引物延伸、抗生素敏感性试验、电子显微镜、共聚焦显微镜、细胞壁分析和微阵列。
在对功能未知的磷酸盐调节基因受影响的突变菌株进行表型特征分析时,我们发现天蓝色链霉菌SCO2594破坏突变体对万古霉素高度耐药,并具有其他表型改变,如抗生素过量产生、生长受损和磷酸盐细胞壁含量降低。对该突变体的转录组学研究表明万古霉素耐药性与细胞壁应激之间存在关联。
我们鉴定出一株在高磷和低磷培养基中均对万古霉素高度耐药的天蓝色链霉菌突变体。除了Van蛋白外,其他蛋白如WhiB或SigE似乎也参与了这一调节机制。