Suppr超能文献

一种基于深度信念网络的车辆检测算法。

A vehicle detection algorithm based on deep belief network.

作者信息

Wang Hai, Cai Yingfeng, Chen Long

机构信息

School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China.

Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China.

出版信息

ScientificWorldJournal. 2014;2014:647380. doi: 10.1155/2014/647380. Epub 2014 May 15.

Abstract

Vision based vehicle detection is a critical technology that plays an important role in not only vehicle active safety but also road video surveillance application. Traditional shallow model based vehicle detection algorithm still cannot meet the requirement of accurate vehicle detection in these applications. In this work, a novel deep learning based vehicle detection algorithm with 2D deep belief network (2D-DBN) is proposed. In the algorithm, the proposed 2D-DBN architecture uses second-order planes instead of first-order vector as input and uses bilinear projection for retaining discriminative information so as to determine the size of the deep architecture which enhances the success rate of vehicle detection. On-road experimental results demonstrate that the algorithm performs better than state-of-the-art vehicle detection algorithm in testing data sets.

摘要

基于视觉的车辆检测是一项关键技术,它不仅在车辆主动安全方面,而且在道路视频监控应用中都发挥着重要作用。基于传统浅层模型的车辆检测算法在这些应用中仍无法满足精确车辆检测的要求。在这项工作中,提出了一种基于二维深度信念网络(2D-DBN)的新型深度学习车辆检测算法。在该算法中,所提出的2D-DBN架构使用二阶平面而非一阶向量作为输入,并使用双线性投影来保留判别信息,从而确定深度架构的规模,提高了车辆检测的成功率。道路实验结果表明,该算法在测试数据集上的表现优于现有最先进的车辆检测算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c44/4052056/91a20a48f690/TSWJ2014-647380.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验