Electrical Engineering and Computer Science Department, MIT , Cambridge, Massachusetts 02139, United States.
Nano Lett. 2014 Aug 13;14(8):4406-12. doi: 10.1021/nl5013773. Epub 2014 Jun 30.
One challenge existing since the invention of electron-beam lithography (EBL) is understanding the exposure mechanisms that limit the resolution of EBL. To overcome this challenge, we need to understand the spatial distribution of energy density deposited in the resist, that is, the point-spread function (PSF). During EBL exposure, the processes of electron scattering, phonon, photon, plasmon, and electron emission in the resist are combined, which complicates the analysis of the EBL PSF. Here, we show the measurement of delocalized energy transfer in EBL exposure by using chromatic aberration-corrected energy-filtered transmission electron microscopy (EFTEM) at the sub-10 nm scale. We have defined the role of spot size, electron scattering, secondary electrons, and volume plasmons in the lithographic PSF by performing EFTEM, momentum-resolved electron energy loss spectroscopy (EELS), sub-10 nm EBL, and Monte Carlo simulations. We expect that these results will enable alternative ways to improve the resolution limit of EBL. Furthermore, our approach to study the resolution limits of EBL may be applied to other lithographic techniques where electrons also play a key role in resist exposure, such as ion-beam-, X-ray-, and extreme-ultraviolet lithography.
自电子束光刻 (EBL) 发明以来,一直存在一个挑战,那就是理解限制 EBL 分辨率的曝光机制。为了克服这一挑战,我们需要了解抗蚀剂中沉积的能量密度的空间分布,即点扩散函数 (PSF)。在 EBL 曝光过程中,抗蚀剂中的电子散射、声子、光子、等离子体和电子发射过程相结合,这使得 EBL PSF 的分析变得复杂。在这里,我们通过在亚 10nm 尺度上使用具有色差校正的能量过滤透射电子显微镜 (EFTEM) 展示了在 EBL 曝光中离域能量转移的测量。我们通过执行 EFTEM、动量分辨电子能量损失光谱 (EELS)、亚 10nm 的 EBL 和蒙特卡罗模拟,定义了光斑尺寸、电子散射、二次电子和体等离子体在光刻 PSF 中的作用。我们期望这些结果将为提高 EBL 的分辨率极限提供替代方法。此外,我们研究 EBL 分辨率极限的方法也可以应用于其他光刻技术,其中电子在抗蚀剂曝光中也起着关键作用,如离子束、X 射线和极紫外光刻。