Suppr超能文献

复杂生物网络重建的信息论方法:应用于RAW 264.7巨噬细胞中的细胞因子释放

Information theoretic approach to complex biological network reconstruction: application to cytokine release in RAW 264.7 macrophages.

作者信息

Farhangmehr Farzaneh, Maurya Mano Ram, Tartakovsky Daniel M, Subramaniam Shankar

机构信息

Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, 92093-0412 La Jolla, CA, USA.

出版信息

BMC Syst Biol. 2014 Jun 25;8:77. doi: 10.1186/1752-0509-8-77.

Abstract

BACKGROUND

High-throughput methods for biological measurements generate vast amounts of quantitative data, which necessitate the development of advanced approaches to data analysis to help understand the underlying mechanisms and networks. Reconstruction of biological networks from measured data of different components is a significant challenge in systems biology.

RESULTS

We use an information theoretic approach to reconstruct phosphoprotein-cytokine networks in RAW 264.7 macrophage cells. Cytokines are secreted upon activation of a wide range of regulatory signals transduced by the phosphoprotein network. Identifying these components can help identify regulatory modules responsible for the inflammatory phenotype. The information theoretic approach is based on estimation of mutual information of interactions by using kernel density estimators. Mutual information provides a measure of statistical dependencies between interacting components. Using the topology of the network derived, we develop a data-driven parsimonious input-output model of the phosphoprotein-cytokine network.

CONCLUSIONS

We demonstrate the applicability of our information theoretic approach to reconstruction of biological networks. For the phosphoprotein-cytokine network, this approach not only captures most of the known signaling components involved in cytokine release but also predicts new signaling components involved in the release of cytokines. The results of this study are important for gaining a clear understanding of macrophage activation during the inflammation process.

摘要

背景

用于生物测量的高通量方法产生了大量的定量数据,这就需要开发先进的数据分析方法来帮助理解潜在的机制和网络。从不同成分的测量数据重建生物网络是系统生物学中的一项重大挑战。

结果

我们使用信息论方法在RAW 264.7巨噬细胞中重建磷蛋白-细胞因子网络。细胞因子在由磷蛋白网络转导的广泛调节信号激活后分泌。识别这些成分有助于识别负责炎症表型的调节模块。信息论方法基于使用核密度估计器估计相互作用的互信息。互信息提供了相互作用成分之间统计依赖性的度量。利用导出的网络拓扑结构,我们开发了一个数据驱动的磷蛋白-细胞因子网络简约输入-输出模型。

结论

我们证明了我们的信息论方法在生物网络重建中的适用性。对于磷蛋白-细胞因子网络,这种方法不仅捕获了参与细胞因子释放的大多数已知信号成分,还预测了参与细胞因子释放的新信号成分。这项研究的结果对于清楚了解炎症过程中巨噬细胞的激活非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29a5/4094931/a59335e0459c/1752-0509-8-77-1.jpg

相似文献

2
Time-varying causal inference from phosphoproteomic measurements in macrophage cells.
IEEE Trans Biomed Circuits Syst. 2014 Feb;8(1):74-86. doi: 10.1109/TBCAS.2013.2288035.
3
Identification of crosstalk between phosphoprotein signaling pathways in RAW 264.7 macrophage cells.
PLoS Comput Biol. 2010 Jan 29;6(1):e1000654. doi: 10.1371/journal.pcbi.1000654.
4
Identification of signaling components required for the prediction of cytokine release in RAW 264.7 macrophages.
Genome Biol. 2006;7(2):R11. doi: 10.1186/gb-2006-7-2-r11. Epub 2006 Feb 20.
5
ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context.
BMC Bioinformatics. 2006 Mar 20;7 Suppl 1(Suppl 1):S7. doi: 10.1186/1471-2105-7-S1-S7.
6
Network legos: building blocks of cellular wiring diagrams.
J Comput Biol. 2008 Sep;15(7):829-44. doi: 10.1089/cmb.2007.0139.
7
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
BMC Syst Biol. 2018 Dec 14;12(Suppl 7):115. doi: 10.1186/s12918-018-0635-1.
9
Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins.
BMC Bioinformatics. 2010 Apr 29;11 Suppl 3(Suppl 3):S3. doi: 10.1186/1471-2105-11-S3-S3.

引用本文的文献

1
Modeling transcriptional regulation of the cell cycle using a novel cybernetic-inspired approach.
Biophys J. 2024 Jan 16;123(2):221-234. doi: 10.1016/j.bpj.2023.12.010. Epub 2023 Dec 15.
2
A method for the inference of cytokine interaction networks.
PLoS Comput Biol. 2022 Jun 22;18(6):e1010112. doi: 10.1371/journal.pcbi.1010112. eCollection 2022 Jun.
3
Concepts and Applications of Information Theory to Immuno-Oncology.
Trends Cancer. 2021 Apr;7(4):335-346. doi: 10.1016/j.trecan.2020.12.013. Epub 2021 Feb 20.
5
Parameter uncertainty quantification using surrogate models applied to a spatial model of yeast mating polarization.
PLoS Comput Biol. 2018 May 29;14(5):e1006181. doi: 10.1371/journal.pcbi.1006181. eCollection 2018 May.
6
Demystifying the cytokine network: Mathematical models point the way.
Cytokine. 2017 Oct;98:115-123. doi: 10.1016/j.cyto.2016.11.013. Epub 2016 Dec 3.

本文引用的文献

4
Characterization of the cellular action of the MSK inhibitor SB-747651A.
Biochem J. 2012 Jan 1;441(1):347-57. doi: 10.1042/BJ20110970.
6
The pro- and anti-inflammatory properties of the cytokine interleukin-6.
Biochim Biophys Acta. 2011 May;1813(5):878-88. doi: 10.1016/j.bbamcr.2011.01.034. Epub 2011 Feb 4.
7
The role of the transcription factor CREB in immune function.
J Immunol. 2010 Dec 1;185(11):6413-9. doi: 10.4049/jimmunol.1001829.
8
Pathways for cytokine secretion.
Physiology (Bethesda). 2010 Aug;25(4):218-29. doi: 10.1152/physiol.00017.2010.
9
Interleukin-27 induces a STAT1/3- and NF-kappaB-dependent proinflammatory cytokine profile in human monocytes.
J Biol Chem. 2010 Aug 6;285(32):24404-11. doi: 10.1074/jbc.M110.112599. Epub 2010 Jun 2.
10
Towards genome-scale signalling network reconstructions.
Nat Rev Genet. 2010 Apr;11(4):297-307. doi: 10.1038/nrg2750.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验