Farhangmehr Farzaneh, Maurya Mano Ram, Tartakovsky Daniel M, Subramaniam Shankar
Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, 92093-0412 La Jolla, CA, USA.
BMC Syst Biol. 2014 Jun 25;8:77. doi: 10.1186/1752-0509-8-77.
High-throughput methods for biological measurements generate vast amounts of quantitative data, which necessitate the development of advanced approaches to data analysis to help understand the underlying mechanisms and networks. Reconstruction of biological networks from measured data of different components is a significant challenge in systems biology.
We use an information theoretic approach to reconstruct phosphoprotein-cytokine networks in RAW 264.7 macrophage cells. Cytokines are secreted upon activation of a wide range of regulatory signals transduced by the phosphoprotein network. Identifying these components can help identify regulatory modules responsible for the inflammatory phenotype. The information theoretic approach is based on estimation of mutual information of interactions by using kernel density estimators. Mutual information provides a measure of statistical dependencies between interacting components. Using the topology of the network derived, we develop a data-driven parsimonious input-output model of the phosphoprotein-cytokine network.
We demonstrate the applicability of our information theoretic approach to reconstruction of biological networks. For the phosphoprotein-cytokine network, this approach not only captures most of the known signaling components involved in cytokine release but also predicts new signaling components involved in the release of cytokines. The results of this study are important for gaining a clear understanding of macrophage activation during the inflammation process.
用于生物测量的高通量方法产生了大量的定量数据,这就需要开发先进的数据分析方法来帮助理解潜在的机制和网络。从不同成分的测量数据重建生物网络是系统生物学中的一项重大挑战。
我们使用信息论方法在RAW 264.7巨噬细胞中重建磷蛋白-细胞因子网络。细胞因子在由磷蛋白网络转导的广泛调节信号激活后分泌。识别这些成分有助于识别负责炎症表型的调节模块。信息论方法基于使用核密度估计器估计相互作用的互信息。互信息提供了相互作用成分之间统计依赖性的度量。利用导出的网络拓扑结构,我们开发了一个数据驱动的磷蛋白-细胞因子网络简约输入-输出模型。
我们证明了我们的信息论方法在生物网络重建中的适用性。对于磷蛋白-细胞因子网络,这种方法不仅捕获了参与细胞因子释放的大多数已知信号成分,还预测了参与细胞因子释放的新信号成分。这项研究的结果对于清楚了解炎症过程中巨噬细胞的激活非常重要。