Fateen Seif-Eddeen K, Bonilla-Petriciolet Adrian
Department of Chemical Engineering, Cairo University, Giza 12316, Egypt.
Department of Chemical Engineering, Aguascalientes Institute of Technology, 20256 Aguascalientes, AGS, Mexico.
ScientificWorldJournal. 2014;2014:374510. doi: 10.1155/2014/374510. Epub 2014 May 20.
The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design.
寻找可靠且高效的全局优化算法来解决应用热力学中的相稳定性和相平衡问题是一个正在进行的研究领域。在本研究中,我们评估并比较了八种选定的受自然启发的元启发式算法在解决困难的相稳定性和相平衡问题时的可靠性和效率。这些算法包括布谷鸟搜索(CS)、智能萤火虫算法(IFA)、蝙蝠算法(BA)、人工蜂群算法(ABC)、MAKHA(猴子算法和磷虾群算法的混合算法)、协方差矩阵自适应进化策略(CMAES)、带磁系统搜索(MCSS)和无骨粒子群优化算法(BBPSO)。结果清楚地表明,CS是所有方法中最可靠的,因为它成功解决了本研究中测试的所有热力学问题。CS被证明是一种有前途的受自然启发的优化方法,可用于进行过程设计的应用热力学计算。