Suppr超能文献

从水中获取燃料:光化学法制取氢气。

Fuel from water: the photochemical generation of hydrogen from water.

机构信息

Department of Chemistry, University of Rochester , Rochester, New York 14627, United States.

出版信息

Acc Chem Res. 2014 Aug 19;47(8):2537-44. doi: 10.1021/ar5001605. Epub 2014 Jun 26.

Abstract

Hydrogen has been labeled the fuel of the future since it contains no carbon, has the highest specific enthalpy of combustion of any chemical fuel, yields only water upon complete oxidation, and is not limited by Carnot considerations in the amount of work obtained when used in a fuel cell. To be used on the scale needed for sustainable growth on a global scale, hydrogen must be produced by the light-driven splitting of water into its elements, as opposed to reforming of methane, as is currently done. The photochemical generation of H2, which is the reductive side of the water splitting reaction, is the focus of this Account, particularly with regard to work done in the senior author's laboratory over the last 5 years. Despite seminal work done more than 30 years ago and the extensive research conducted since then on all aspects of the process, no viable system has been developed for the efficient and robust photogeneration of H2 from water using only earth abundant elements. For the photogeneration of H2 from water, a system must contain a light absorber, a catalyst, and a source of electrons. In this Account, the discovery and study of new Co and Ni catalysts are described that suggest H2 forms via a heterocoupling mechanism from a metal-hydride and a ligand-bound proton. Several complexes with redox active dithiolene ligands are newly recognized to be effective in promoting the reaction. A major new development in the work described is the use of water-soluble CdSe quantum dots (QDs) as light absorbers for H2 generation in water. Both activity and robustness of the most successful systems are impressive with turnover numbers (TONs) approaching 10(6), activity maintained over 15 days, and a quantum yield for H2 of 36% with 520 nm light. The water solubilizing capping agent for the first system examined was dihydrolipoic acid (DHLA) anion, and the catalyst was determined to be a DHLA complex of Ni(II) formed in situ. Dissociation of DHLA from the QD surface proved problematic in assessing other catalysts and stimulated the synthesis of tridentate trithiolate (S3) capping agents that are inert to dissociation. In this way, CdSe QD's having these S3 capping agents were used in systems for the photogeneration of H2 that allowed meaningful comparison of the relative activity of different catalysts for the light-driven production of H2 from water. This new chemistry also points the way to the development of new photocathodes based on S3-capped QDs for removal of the chemical sacrificial electron donor and its replacement electrochemically in photoelectrosynthetic cells.

摘要

氢气被誉为未来的燃料,因为它不含碳,其燃烧的比热在所有化学燃料中最高,完全氧化后只生成水,并且在燃料电池中使用时不受卡诺考虑的限制,可以获得更多的功。为了在全球范围内实现可持续增长,氢气必须通过光驱动的水分解来生产,而不是像目前那样通过甲烷重整来生产。光化学产生氢气是水分解反应的还原侧,这是本报告的重点,特别是与过去 5 年资深作者实验室的工作有关。尽管 30 多年前就有了开创性的工作,并且此后对该过程的各个方面进行了广泛的研究,但仍然没有开发出一种可行的系统,能够仅使用丰富的地球元素从水中高效、稳健地光解产生氢气。对于光解水产生氢气,一个系统必须包含一个光吸收体、一个催化剂和一个电子源。在本报告中,描述了新的 Co 和 Ni 催化剂的发现和研究,这些催化剂表明 H2 通过金属氢化物和配体结合质子的异核偶联机制形成。几种具有氧化还原活性二硫烯配体的配合物被新发现能有效地促进反应。所描述工作的一个主要新发展是使用水溶性 CdSe 量子点 (QD) 作为光吸收体,在水中产生氢气。最成功的系统的活性和稳健性都令人印象深刻,其周转数 (TON) 接近 10(6),活性保持超过 15 天,用 520nm 光的量子产率为 36%。第一个被研究的系统的水溶性封端剂是二氢硫辛酸 (DHLA) 阴离子,催化剂被确定为原位形成的 Ni(II)的 DHLA 配合物。DHLA 从 QD 表面的解离在评估其他催化剂时证明是有问题的,这刺激了合成三齿三硫代 (S3) 封端剂,它们对解离是惰性的。通过这种方式,使用具有这些 S3 封端剂的 CdSe QD 进行了光解水产生氢气的系统研究,从而可以对不同催化剂在光驱动水分解产生氢气方面的相对活性进行有意义的比较。这种新化学也为基于 S3 封端 QD 的新型光电阴极的开发指明了方向,这种光电阴极可以去除化学牺牲电子供体,并在光电化学电池中通过电化学取代它。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验