Tzitzimpasis Paris, Ries Mario, Raaymakers Bas W, Zachiu Cornel
Department of Radiotherapy, UMC Utrecht, 3584 CX, Utrecht, The Netherlands.
Imaging Division, UMC Utrecht, 3584 CX, Utrecht, The Netherlands.
Sci Rep. 2024 Jul 1;14(1):15002. doi: 10.1038/s41598-024-65896-3.
Variational image registration methods commonly employ a similarity metric and a regularization term that renders the minimization problem well-posed. However, many frequently used regularizations such as smoothness or curvature do not necessarily reflect the underlying physics that apply to anatomical deformations. This, in turn, can make the accurate estimation of complex deformations particularly challenging. Here, we present a new highly flexible regularization inspired from the physics of fluid dynamics which allows applying independent penalties on the divergence and curl of the deformations and/or their nth order derivative. The complexity of the proposed generalized div-curl regularization renders the problem particularly challenging using conventional optimization techniques. To this end, we develop a transformation model and an optimization scheme that uses the divergence and curl components of the deformation as control parameters for the registration. We demonstrate that the original unconstrained minimization problem reduces to a constrained problem for which we propose the use of the augmented Lagrangian method. Doing this, the equations of motion greatly simplify and become managable. Our experiments indicate that the proposed framework can be applied on a variety of different registration problems and produce highly accurate deformations with the desired physical properties.
变分图像配准方法通常采用相似性度量和正则化项,以使最小化问题适定。然而,许多常用的正则化方法,如平滑度或曲率,并不一定反映适用于解剖变形的潜在物理原理。这反过来又会使复杂变形的准确估计变得特别具有挑战性。在此,我们提出一种受流体动力学物理原理启发的新型高度灵活的正则化方法,该方法允许对变形的散度和旋度及其n阶导数施加独立的惩罚。所提出的广义散度 - 旋度正则化的复杂性使得使用传统优化技术解决该问题特别具有挑战性。为此,我们开发了一种变换模型和一种优化方案,该方案使用变形的散度和旋度分量作为配准的控制参数。我们证明,原始的无约束最小化问题简化为一个约束问题,对此我们建议使用增广拉格朗日方法。这样做,运动方程大大简化并变得易于处理。我们的实验表明,所提出的框架可以应用于各种不同的配准问题,并产生具有所需物理特性的高精度变形。