Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland. Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland.
Cancer Res. 2014 Sep 1;74(17):4937-45. doi: 10.1158/0008-5472.CAN-14-1042. Epub 2014 Jun 26.
Methods to visualize metastasis exist, but additional tools to better define the biologic and physical processes underlying invasion and intravasation are still needed. One difficulty in studying metastasis stems from the complexity of the interface between the tumor microenvironment and the vascular system. Here, we report the development of an investigational platform that positions tumor cells next to an artificial vessel embedded in an extracellular matrix. On this platform, we used live-cell fluorescence microscopy to analyze the complex interplay between metastatic cancer cells and a functional artificial microvessel that was lined with endothelial cells. The platform recapitulated known interactions, and its use demonstrated the capabilities for a systematic study of novel physical and biologic parameters involved in invasion and intravasation. In summary, our work offers an important new tool to advance knowledge about metastasis and candidate antimetastatic therapies.
存在用于可视化转移的方法,但仍需要额外的工具来更好地定义侵袭和浸润的生物学和物理过程。研究转移的一个困难源于肿瘤微环境与血管系统之间界面的复杂性。在这里,我们报告了一种研究平台的开发,该平台将肿瘤细胞置于嵌入细胞外基质的人工血管旁边。在这个平台上,我们使用活细胞荧光显微镜分析了转移性癌细胞与内皮细胞衬里的功能性人工微血管之间的复杂相互作用。该平台再现了已知的相互作用,其使用证明了系统研究参与侵袭和浸润的新物理和生物学参数的能力。总之,我们的工作为推进转移和候选抗转移治疗的知识提供了一个重要的新工具。