Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France.
Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France.
Curr Opin Chem Biol. 2014 Jun;20:92-102. doi: 10.1016/j.cbpa.2014.05.016. Epub 2014 Jun 25.
In fluorescence microscopy, the photophysical properties of the fluorescent markers play a fundamental role. The beauty of phototransformable fluorescent proteins (PTFPs) is that some of these properties can be precisely controlled by light. A wide range of PTFPs have been developed in recent years, including photoactivatable, photoconvertible and photoswitchable fluorescent proteins. These smart labels triggered a plethora of advanced fluorescence methods to scrutinize biological cells or organisms dynamically, quantitatively and with unprecedented resolution. Despite continuous improvements, PTFPs still suffer from limitations, and mechanistic questions remain as to how these proteins precisely work.
在荧光显微镜中,荧光标记物的光物理性质起着至关重要的作用。光转化型荧光蛋白(PTFP)的美妙之处在于,其中一些性质可以通过光来精确控制。近年来,已经开发出了多种 PTFP,包括光激活型、光转化型和光开关型荧光蛋白。这些智能标签引发了大量先进的荧光方法,可以动态、定量地以前所未有的分辨率研究生物细胞或生物体。尽管不断改进,但 PTFP 仍然存在局限性,这些蛋白如何精确工作的机制问题仍然存在。