Sund Jukka, Palomäki Jaana, Ahonen Niina, Savolainen Kai, Alenius Harri, Puustinen Anne
Unit of Systems Toxicology, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a b, FIN-00250 Helsinki, Finland; Nanosafety Research Centre, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a b, FIN-00250 Helsinki, Finland.
Unit of Systems Toxicology, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a b, FIN-00250 Helsinki, Finland.
J Proteomics. 2014 Aug 28;108:469-83. doi: 10.1016/j.jprot.2014.06.011. Epub 2014 Jun 25.
Nano-sized titanium dioxide (nTiO2) is one of the most produced engineered nanomaterials and therefore carries a high risk for workplace exposure. In several nanosafety studies, exposure to nTiO2 has been shown to trigger inflammation in mice lung and to cause oxidative stress. Here, cytoplasmic proteome changes in human monocyte derived macrophages were investigated with two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry to evaluate the adverse cellular effects after exposure to different types of TiO2 nanoparticles (NPs). Both studied TiO2 NPs (rutile TiO2 with or without silica coating) evoked similar proteome alterations. The identified proteins were linked to metabolic homeostasis, cytoskeleton remodeling and oxidative stress. The abundances of chloride intracellular channel protein 1 and cathepsin D changed only after exposure to nTiO2 as compared to a coarse particle analog. Enrichment analysis revealed that 70% of the proteins with changed intensities contained known acetylation sites, and it was possible to confirm a significant induction of cytoplasmic protein acetylation after nTiO2 exposure. The course of the events during phagocytosis could account for the observed membrane maintenance, metabolic and cytoskeletal protein expression changes. Lysine acetylation of cytoplasmic proteins in macrophages is emerging as a major cell regulation mechanism after nTiO2 exposure.
While the amount of nanosafety research conducted in recent years has been constantly increasing, proteomics has not yet been utilized widely in this field. In addition, reversible protein post-translational modifications (PTMs) such as acetylation and phosphorylation have not been investigated in-depth in nanomaterial exposed cells. Proteome changes observed in nanomaterial exposed macrophages revealed active phagocytosis of the particles and provided new insights into underlying mechanisms of biological responses to nTiO2 exposures. Moreover, reversible protein acetylation might be a major cellular regulation event occurring in nanomaterial exposed cells.
纳米级二氧化钛(nTiO2)是产量最高的工程纳米材料之一,因此在工作场所暴露风险很高。在多项纳米安全性研究中,已表明暴露于nTiO2会引发小鼠肺部炎症并导致氧化应激。在此,采用二维差异凝胶电泳(2D-DIGE)和质谱法研究了人类单核细胞衍生巨噬细胞中的细胞质蛋白质组变化,以评估暴露于不同类型二氧化钛纳米颗粒(NPs)后的不良细胞效应。所研究的两种TiO2 NPs(有或无二氧化硅涂层的金红石TiO2)引起了相似的蛋白质组改变。鉴定出的蛋白质与代谢稳态、细胞骨架重塑和氧化应激有关。与粗颗粒类似物相比,仅在暴露于nTiO2后,细胞内氯离子通道蛋白1和组织蛋白酶D的丰度才发生变化。富集分析表明,强度发生变化的蛋白质中有70%含有已知的乙酰化位点,并且可以证实在nTiO2暴露后细胞质蛋白乙酰化有显著诱导。吞噬作用过程中的事件进程可以解释所观察到的膜维持、代谢和细胞骨架蛋白表达变化。巨噬细胞中细胞质蛋白的赖氨酸乙酰化正在成为nTiO2暴露后的一种主要细胞调节机制。
尽管近年来进行的纳米安全性研究数量一直在不断增加,但蛋白质组学在该领域尚未得到广泛应用。此外,尚未对纳米材料暴露细胞中的乙酰化和磷酸化等可逆蛋白质翻译后修饰(PTM)进行深入研究。在纳米材料暴露的巨噬细胞中观察到的蛋白质组变化揭示了颗粒的活跃吞噬作用,并为对nTiO2暴露的生物学反应的潜在机制提供了新见解。此外,可逆蛋白质乙酰化可能是纳米材料暴露细胞中发生的主要细胞调节事件。