Suppr超能文献

基于质谱的蛋白质组学用于系统表征工程纳米材料对生物响应

Mass spectrometry-based proteomics for system-level characterization of biological responses to engineered nanomaterials.

机构信息

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.

出版信息

Anal Bioanal Chem. 2018 Sep;410(24):6067-6077. doi: 10.1007/s00216-018-1168-6. Epub 2018 Jun 8.

Abstract

The widespread use of engineered nanomaterials or nanotechnology makes the characterization of biological responses to nanomaterials an important area of research. The application of omics approaches, such as mass spectrometry-based proteomics, has revealed new insights into the cellular responses of exposure to nanomaterials, including how nanomaterials interact and alter cellular pathways. In addition, exposure to engineered nanomaterials often leads to the generation of reactive oxygen species and cellular oxidative stress, which implicates a redox-dependent regulation of cellular responses under such conditions. In this review, we discuss quantitative proteomics-based approaches, with an emphasis on redox proteomics, as a tool for system-level characterization of the biological responses induced by engineered nanomaterials. Graphical abstract ᅟ.

摘要

广泛使用的工程纳米材料或纳米技术使得对纳米材料的生物反应进行特征描述成为一个重要的研究领域。组学方法的应用,如基于质谱的蛋白质组学,揭示了纳米材料暴露的细胞反应的新见解,包括纳米材料如何相互作用和改变细胞途径。此外,暴露于工程纳米材料通常会导致活性氧物种和细胞氧化应激的产生,这意味着在这种情况下,细胞反应受到氧化还原依赖性调节。在这篇综述中,我们讨论了基于定量蛋白质组学的方法,重点是氧化还原蛋白质组学,作为系统水平描述工程纳米材料诱导的生物反应的工具。

相似文献

1
Mass spectrometry-based proteomics for system-level characterization of biological responses to engineered nanomaterials.
Anal Bioanal Chem. 2018 Sep;410(24):6067-6077. doi: 10.1007/s00216-018-1168-6. Epub 2018 Jun 8.
2
Characterization of cellular oxidative stress response by stoichiometric redox proteomics.
Am J Physiol Cell Physiol. 2021 Feb 1;320(2):C182-C194. doi: 10.1152/ajpcell.00040.2020. Epub 2020 Dec 2.
3
Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics.
Proteomics. 2013 Feb;13(3-4):579-96. doi: 10.1002/pmic.201200270. Epub 2013 Jan 14.
4
Application of nanomaterials in proteomics-driven precision medicine.
Theranostics. 2022 Mar 6;12(6):2674-2686. doi: 10.7150/thno.64325. eCollection 2022.
5
A redox proteomics approach to investigate the mode of action of nanomaterials.
Toxicol Appl Pharmacol. 2016 May 15;299:24-9. doi: 10.1016/j.taap.2016.01.019. Epub 2016 Jan 28.
6
Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins.
Antioxid Redox Signal. 2017 Mar 1;26(7):329-344. doi: 10.1089/ars.2016.6720. Epub 2016 May 20.
7
Redox Proteomes in Human Physiology and Disease Mechanisms.
J Proteome Res. 2020 Jan 3;19(1):1-17. doi: 10.1021/acs.jproteome.9b00586. Epub 2019 Nov 8.
8
The Expanding Landscape of the Thiol Redox Proteome.
Mol Cell Proteomics. 2016 Jan;15(1):1-11. doi: 10.1074/mcp.O115.056051. Epub 2015 Oct 30.
10
Thiol-based redox proteomics in cancer research.
Proteomics. 2015 Jan;15(2-3):287-99. doi: 10.1002/pmic.201400164. Epub 2014 Dec 15.

引用本文的文献

2
Proteomics unite traditional toxicological assessment methods to evaluate the toxicity of iron oxide nanoparticles.
Front Pharmacol. 2022 Sep 12;13:1011065. doi: 10.3389/fphar.2022.1011065. eCollection 2022.
3
Analysis of Nanotoxicity with Integrated Omics and Mechanobiology.
Nanomaterials (Basel). 2021 Sep 13;11(9):2385. doi: 10.3390/nano11092385.
4
Integrated Redox Proteomic Analysis Highlights New Mechanisms of Sensitivity to Silver Nanoparticles.
Mol Cell Proteomics. 2021;20:100073. doi: 10.1016/j.mcpro.2021.100073. Epub 2021 Mar 20.
5
Systematic Review of Multi-Omics Approaches to Investigate Toxicological Effects in Macrophages.
Int J Mol Sci. 2020 Dec 9;21(24):9371. doi: 10.3390/ijms21249371.
6
Characterization of cellular oxidative stress response by stoichiometric redox proteomics.
Am J Physiol Cell Physiol. 2021 Feb 1;320(2):C182-C194. doi: 10.1152/ajpcell.00040.2020. Epub 2020 Dec 2.
7
Proteomic Analysis Identifies Markers of Exposure to Cadmium Sulphide Quantum Dots (CdS QDs).
Nanomaterials (Basel). 2020 Jun 22;10(6):1214. doi: 10.3390/nano10061214.
8
Block Design with Common Reference Samples Enables Robust Large-Scale Label-Free Quantitative Proteome Profiling.
J Proteome Res. 2020 Jul 2;19(7):2863-2872. doi: 10.1021/acs.jproteome.0c00310. Epub 2020 May 22.
9
Redox toxicology of environmental chemicals causing oxidative stress.
Redox Biol. 2020 Jul;34:101475. doi: 10.1016/j.redox.2020.101475. Epub 2020 Apr 18.

本文引用的文献

1
Role of omics techniques in the toxicity testing of nanoparticles.
J Nanobiotechnology. 2017 Nov 21;15(1):84. doi: 10.1186/s12951-017-0320-3.
3
Investigation into the pulmonary inflammopathology of exposure to nickel oxide nanoparticles in mice.
Nanomedicine. 2018 Oct;14(7):2329-2339. doi: 10.1016/j.nano.2017.10.003. Epub 2017 Oct 23.
4
Nanotechnology: An Untapped Resource for Food Packaging.
Front Microbiol. 2017 Sep 12;8:1735. doi: 10.3389/fmicb.2017.01735. eCollection 2017.
5
Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects.
J Proteome Res. 2017 Nov 3;16(11):4020-4034. doi: 10.1021/acs.jproteome.7b00412. Epub 2017 Oct 6.
7
Cellular uptake of nanoparticles: journey inside the cell.
Chem Soc Rev. 2017 Jul 17;46(14):4218-4244. doi: 10.1039/c6cs00636a.
8
Nanoparticles Alter Secondary Metabolism in Plants via ROS Burst.
Front Plant Sci. 2017 May 19;8:832. doi: 10.3389/fpls.2017.00832. eCollection 2017.
9
Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines.
Molecules. 2017 May 22;22(5):857. doi: 10.3390/molecules22050857.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验