Smith Dayle M A, Rosso Kevin M
Pacific Northwest National Laboratory, P. O. Box 999, MSIN J4-33, Richland, Washington 99352, United States.
J Phys Chem B. 2014 Jul 24;118(29):8505-12. doi: 10.1021/jp502803y. Epub 2014 Jul 14.
The staggered cross decaheme configuration of electron transfer cofactors in the outer-membrane cytochrome MtrF serves as a prototype for conformationally gated multiheme electron transport. Derived from the bacterium Shewanella oneidensis, the staggered cross configuration reveals intersecting c-type octaheme and tetraheme "wires" containing thermodynamic "hills" and "valleys" (Proc. Natl. Acad. Sci. U. S. A. 2014, 11, 611-616), suggesting that the protein structure may include a dynamical mechanism for conductance and pathway switching depending on enzymatic functional need. Here, we applied classical molecular and statistical mechanics calculations of large-amplitude protein dynamics in MtrF, to address its potential to modulate pathway conductance, including assessment of the effect of the total charge state. Explicit solvent molecular dynamics simulations of fully oxidized and fully reduced MtrF showed that the slowest mode of collective decaheme motion is 90% similar between the oxidized and reduced states and consists primarily of interheme separation with minor rotational contributions. The frequency of this motion is 1.7 × 10(7) s(-1), both for fully oxidized and fully reduced MtrF, slower than the downhill electron transfer rates between stacked heme pairs at the octaheme termini and faster than the electron transfer rates between parallel hemes in the tetraheme chain. This implies that MtrF uses slow conformational fluctuations to modulate electron flow along the octaheme pathway, apparently for the purpose of increasing the residence time of electrons on lowest potential hemes 4 and 9. This apparent gating mechanism should increase the success rate of electron transfer from MtrF to low potential environmental acceptors via these two solvent-exposed hemes.
外膜细胞色素MtrF中电子传递辅因子的交错十字形十血红素构型是构象门控多血红素电子传递的一个原型。这种交错十字形构型源自希瓦氏菌,它揭示了相交的c型八血红素和四血红素“链”,其中包含热力学“峰”和“谷”(《美国国家科学院院刊》2014年,111卷,611 - 616页),这表明蛋白质结构可能包括一种根据酶功能需求进行电导和途径切换的动态机制。在这里,我们应用经典分子和统计力学计算来研究MtrF中大幅度蛋白质动力学,以探讨其调节途径电导的潜力,包括评估总电荷状态的影响。对完全氧化和完全还原的MtrF进行的显式溶剂分子动力学模拟表明,氧化态和还原态之间十血红素集体运动的最慢模式相似度为90%,主要由血红素间分离构成,伴有少量旋转贡献。这种运动的频率对于完全氧化和完全还原的MtrF均为1.7×10⁷ s⁻¹,比八血红素末端堆叠血红素对之间的下坡电子传递速率慢,比四血红素链中平行血红素之间的电子传递速率快。这意味着MtrF利用缓慢的构象波动来调节沿八血红素途径的电子流,显然是为了增加电子在最低电位血红素4和9上的停留时间。这种明显的门控机制应该会提高电子从MtrF通过这两个暴露于溶剂的血红素传递到低电位环境受体的成功率。