Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom.
Department of Chemistry, Technische Universität München, D-85747 Garching, Germany.
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3425-3430. doi: 10.1073/pnas.1818003116. Epub 2019 Feb 12.
The bacterium has evolved a sophisticated electron transfer (ET) machinery to export electrons from the cytosol to extracellular space during extracellular respiration. At the heart of this process are decaheme proteins of the Mtr pathway, MtrC and MtrF, located at the external face of the outer bacterial membrane. Crystal structures have revealed that these proteins bind 10 c-type hemes arranged in the peculiar shape of a staggered cross that trifurcates the electron flow, presumably to reduce extracellular substrates while directing electrons to neighboring multiheme cytochromes at either side along the membrane. Especially intriguing is the design of the heme junctions trifurcating the electron flow: they are made of coplanar and T-shaped heme pair motifs with relatively large and seemingly unfavorable tunneling distances. Here, we use electronic structure calculations and molecular simulations to show that the side chains of the heme rings, in particular the cysteine linkages inserting in the space between coplanar and T-shaped heme pairs, strongly enhance electronic coupling in these two motifs. This results in an [Formula: see text]-fold speedup of ET steps at heme junctions that would otherwise be rate limiting. The predicted maximum electron flux through the solvated proteins is remarkably similar for all possible flow directions, suggesting that MtrC and MtrF shuttle electrons with similar efficiency and reversibly in directions parallel and orthogonal to the outer membrane. No major differences in the ET properties of MtrC and MtrF are found, implying that the different expression levels of the two proteins during extracellular respiration are not related to redox function.
该细菌已经进化出一种复杂的电子转移(ET)机制,以便在外呼吸过程中从细胞质将电子输出到细胞外空间。在这个过程的核心是位于外细胞膜外表面的 Mtr 途径的 decaheme 蛋白 MtrC 和 MtrF。晶体结构表明,这些蛋白质结合了 10 个 c 型血红素,这些血红素以交错交叉的奇特形状排列,将电子流分叉,大概是为了减少细胞外基质,同时将电子导向膜两侧相邻的多血红素细胞色素。特别引人注目的是分叉电子流的血红素连接设计:它们由共面和 T 型血红素对基序组成,具有相对较大且似乎不利的隧穿距离。在这里,我们使用电子结构计算和分子模拟表明,血红素环的侧链,特别是插入共面和 T 型血红素对之间的半胱氨酸键,强烈增强了这两个基序中的电子耦合。这导致在血红素连接点处的 ET 步骤的[Formula: see text]倍加速,否则这将是限速步骤。通过溶剂化蛋白质的预测最大电子通量对于所有可能的流动方向都非常相似,这表明 MtrC 和 MtrF 以类似的效率和可逆性在平行和垂直于外膜的方向上穿梭电子。在 MtrC 和 MtrF 的 ET 性质中未发现明显差异,这意味着在细胞外呼吸过程中两种蛋白质的不同表达水平与氧化还原功能无关。
Proc Natl Acad Sci U S A. 2019-2-12
Proc Natl Acad Sci U S A. 2011-5-23
Proc Natl Acad Sci U S A. 2014-1-2
Angew Chem Int Ed Engl. 2018-5-2
Appl Environ Microbiol. 2016-8-15
J Phys Chem B. 2014-7-24
Proc Natl Acad Sci U S A. 2021-9-28
J Chem Inf Model. 2025-5-12
J Phys Chem B. 2024-9-19
Proc Natl Acad Sci U S A. 2024-8-13
Angew Chem Weinheim Bergstr Ger. 2022-10-10
J Am Chem Soc. 2018-8-2
Curr Opin Chem Biol. 2018-7-14
Angew Chem Int Ed Engl. 2018-5-2
Proc Natl Acad Sci U S A. 2018-3-19
J Am Chem Soc. 2017-11-17
Appl Environ Microbiol. 2016-8-15