文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

分叉电子流在十聚体细菌蛋白 MtrC 和 MtrF 中的动力学。

Kinetics of trifurcated electron flow in the decaheme bacterial proteins MtrC and MtrF.

机构信息

Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom.

Department of Chemistry, Technische Universität München, D-85747 Garching, Germany.

出版信息

Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3425-3430. doi: 10.1073/pnas.1818003116. Epub 2019 Feb 12.


DOI:10.1073/pnas.1818003116
PMID:30755526
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6397555/
Abstract

The bacterium has evolved a sophisticated electron transfer (ET) machinery to export electrons from the cytosol to extracellular space during extracellular respiration. At the heart of this process are decaheme proteins of the Mtr pathway, MtrC and MtrF, located at the external face of the outer bacterial membrane. Crystal structures have revealed that these proteins bind 10 c-type hemes arranged in the peculiar shape of a staggered cross that trifurcates the electron flow, presumably to reduce extracellular substrates while directing electrons to neighboring multiheme cytochromes at either side along the membrane. Especially intriguing is the design of the heme junctions trifurcating the electron flow: they are made of coplanar and T-shaped heme pair motifs with relatively large and seemingly unfavorable tunneling distances. Here, we use electronic structure calculations and molecular simulations to show that the side chains of the heme rings, in particular the cysteine linkages inserting in the space between coplanar and T-shaped heme pairs, strongly enhance electronic coupling in these two motifs. This results in an [Formula: see text]-fold speedup of ET steps at heme junctions that would otherwise be rate limiting. The predicted maximum electron flux through the solvated proteins is remarkably similar for all possible flow directions, suggesting that MtrC and MtrF shuttle electrons with similar efficiency and reversibly in directions parallel and orthogonal to the outer membrane. No major differences in the ET properties of MtrC and MtrF are found, implying that the different expression levels of the two proteins during extracellular respiration are not related to redox function.

摘要

该细菌已经进化出一种复杂的电子转移(ET)机制,以便在外呼吸过程中从细胞质将电子输出到细胞外空间。在这个过程的核心是位于外细胞膜外表面的 Mtr 途径的 decaheme 蛋白 MtrC 和 MtrF。晶体结构表明,这些蛋白质结合了 10 个 c 型血红素,这些血红素以交错交叉的奇特形状排列,将电子流分叉,大概是为了减少细胞外基质,同时将电子导向膜两侧相邻的多血红素细胞色素。特别引人注目的是分叉电子流的血红素连接设计:它们由共面和 T 型血红素对基序组成,具有相对较大且似乎不利的隧穿距离。在这里,我们使用电子结构计算和分子模拟表明,血红素环的侧链,特别是插入共面和 T 型血红素对之间的半胱氨酸键,强烈增强了这两个基序中的电子耦合。这导致在血红素连接点处的 ET 步骤的[Formula: see text]倍加速,否则这将是限速步骤。通过溶剂化蛋白质的预测最大电子通量对于所有可能的流动方向都非常相似,这表明 MtrC 和 MtrF 以类似的效率和可逆性在平行和垂直于外膜的方向上穿梭电子。在 MtrC 和 MtrF 的 ET 性质中未发现明显差异,这意味着在细胞外呼吸过程中两种蛋白质的不同表达水平与氧化还原功能无关。

相似文献

[1]
Kinetics of trifurcated electron flow in the decaheme bacterial proteins MtrC and MtrF.

Proc Natl Acad Sci U S A. 2019-2-12

[2]
Structure of a bacterial cell surface decaheme electron conduit.

Proc Natl Acad Sci U S A. 2011-5-23

[3]
Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials.

Proc Natl Acad Sci U S A. 2014-1-2

[4]
Distinct Electron Conductance Regimes in Bacterial Decaheme Cytochromes.

Angew Chem Int Ed Engl. 2018-5-2

[5]
Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.

Appl Environ Microbiol. 2016-8-15

[6]
Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors.

J Biol Inorg Chem. 2007-9

[7]
Targeted protein degradation of outer membrane decaheme cytochrome MtrC metal reductase in Shewanella oneidensis MR-1 measured using biarsenical probe CrAsH-EDT(2).

Biochemistry. 2011-10-25

[8]
Possible dynamically gated conductance along heme wires in bacterial multiheme cytochromes.

J Phys Chem B. 2014-7-24

[9]
The crystal structure of the extracellular 11-heme cytochrome UndA reveals a conserved 10-heme motif and defined binding site for soluble iron chelates.

Structure. 2012-6-7

[10]
Nanosecond heme-to-heme electron transfer rates in a multiheme cytochrome nanowire reported by a spectrally unique His/Met-ligated heme.

Proc Natl Acad Sci U S A. 2021-9-28

引用本文的文献

[1]
Impact of Native Environment in Multiheme-Cytochrome Chains of the MtrCAB Complex.

J Chem Inf Model. 2025-5-12

[2]
Cytochrome "nanowires" are physically limited to sub-picoamp currents that suffice for cellular respiration.

Front Chem. 2025-3-12

[3]
Dynamic synthesis and transport of phenazine-1-carboxylic acid to boost extracellular electron transfer rate.

Nat Commun. 2025-3-25

[4]
Dynamic Electronic Structure Fluctuations in the De Novo Peptide ACC-Dimer Revealed by First-Principles Theory and Machine Learning.

J Chem Inf Model. 2025-3-10

[5]
Undulating Free Energy Landscapes Buffer Redox Chains from Environmental Fluctuations.

J Phys Chem B. 2024-9-19

[6]
Shallow conductance decay along the array of a single tetraheme protein wire.

Chem Sci. 2024-7-3

[7]
Electron transport through two interacting channels in Azurin-based solid-state junctions.

Proc Natl Acad Sci U S A. 2024-8-13

[8]
Engineering of bespoke photosensitiser-microbe interfaces for enhanced semi-artificial photosynthesis.

Chem Sci. 2024-5-21

[9]
Photocatalytic Removal of the Greenhouse Gas Nitrous Oxide by Liposomal Microreactors.

Angew Chem Weinheim Bergstr Ger. 2022-10-10

[10]
Cryo-EM structure of HQNO-bound alternative complex III from the anoxygenic phototrophic bacterium Chloroflexus aurantiacus.

Plant Cell. 2024-10-3

本文引用的文献

[1]
Direct evidence for heme-assisted solid-state electronic conduction in multi-heme -type cytochromes.

Chem Sci. 2018-7-27

[2]
Multiheme Cytochrome Mediated Redox Conduction through Shewanella oneidensis MR-1 Cells.

J Am Chem Soc. 2018-8-2

[3]
Nature's conductors: what can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion?

Curr Opin Chem Biol. 2018-7-14

[4]
Electron transfer and transport through multi-heme proteins: recent progress and future directions.

Curr Opin Chem Biol. 2018-7-14

[5]
Distinct Electron Conductance Regimes in Bacterial Decaheme Cytochromes.

Angew Chem Int Ed Engl. 2018-5-2

[6]
Ultrastructure of MR-1 nanowires revealed by electron cryotomography.

Proc Natl Acad Sci U S A. 2018-3-19

[7]
Cysteine Linkages Accelerate Electron Flow through Tetra-Heme Protein STC.

J Am Chem Soc. 2017-11-17

[8]
Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.

Appl Environ Microbiol. 2016-8-15

[9]
Recent Advances in the Theory and Molecular Simulation of Biological Electron Transfer Reactions.

Chem Rev. 2015-10-28

[10]
Redox Linked Flavin Sites in Extracellular Decaheme Proteins Involved in Microbe-Mineral Electron Transfer.

Sci Rep. 2015-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索