Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and.
Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, andDepartment of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132; andDepartment of Biology, University of Utah, Salt Lake City, UT 84112.
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10173-8. doi: 10.1073/pnas.1402526111. Epub 2014 Jun 30.
The macula of the primate retina uniquely concentrates high amounts of the xanthophyll carotenoids lutein, zeaxanthin, and meso-zeaxanthin, but the underlying biochemical mechanisms for this spatial- and species-specific localization have not been fully elucidated. For example, despite abundant retinal levels in mice and primates of a binding protein for zeaxanthin and meso-zeaxanthin, the pi isoform of glutathione S-transferase (GSTP1), only human and monkey retinas naturally contain detectable levels of these carotenoids. We therefore investigated whether or not differences in expression, localization, and activity between mouse and primate carotenoid metabolic enzymes could account for this species-specific difference in retinal accumulation. We focused on β,β-carotene-9',10'-dioxygenase (BCO2, also known as BCDO2), the only known mammalian xanthophyll cleavage enzyme. RT-PCR, Western blot analysis, and immunohistochemistry (IHC) confirmed that BCO2 is expressed in both mouse and primate retinas. Cotransfection of expression plasmids of human or mouse BCO2 into Escherichia coli strains engineered to produce zeaxanthin demonstrated that only mouse BCO2 is an active zeaxanthin cleavage enzyme. Surface plasmon resonance (SPR) binding studies showed that the binding affinities between human BCO2 and lutein, zeaxanthin, and meso-zeaxanthin are 10- to 40-fold weaker than those for mouse BCO2, implying that ineffective capture of carotenoids by human BCO2 prevents cleavage of xanthophyll carotenoids. Moreover, BCO2 knockout mice, unlike WT mice, accumulate zeaxanthin in their retinas. Our results provide a novel explanation for how primates uniquely concentrate xanthophyll carotenoids at high levels in retinal tissue.
灵长类动物视网膜的黄斑区独特地集中了大量的叶黄素类胡萝卜素,如叶黄素、玉米黄质和中玉米黄质,但这种空间和物种特异性定位的潜在生化机制尚未完全阐明。例如,尽管在小鼠和灵长类动物的视网膜中存在大量的玉米黄质和中玉米黄质结合蛋白,即谷胱甘肽 S-转移酶(GSTP1)的π同工型,但只有人和猴的视网膜自然含有可检测水平的这些类胡萝卜素。因此,我们研究了小鼠和灵长类动物类胡萝卜素代谢酶的表达、定位和活性差异是否可以解释这种物种特异性的视网膜积累差异。我们专注于β,β-胡萝卜素-9',10'-加双氧酶(BCO2,也称为 BCDO2),这是唯一已知的哺乳动物叶黄素裂解酶。RT-PCR、Western blot 分析和免疫组织化学(IHC)证实 BCO2 在小鼠和灵长类动物的视网膜中均有表达。将人或鼠 BCO2 的表达质粒共转染到工程菌中以产生玉米黄质,结果表明只有鼠 BCO2 是一种活性的玉米黄质裂解酶。表面等离子体共振(SPR)结合研究表明,人 BCO2 与叶黄素、玉米黄质和中玉米黄质的结合亲和力比鼠 BCO2 弱 10-40 倍,这意味着人 BCO2 对类胡萝卜素的捕获能力较弱,从而阻止了叶黄素类胡萝卜素的裂解。此外,BCO2 基因敲除小鼠与 WT 小鼠不同,其视网膜中积累了玉米黄质。我们的研究结果为灵长类动物如何独特地在视网膜组织中高度集中叶黄素类胡萝卜素提供了新的解释。