Laboratory of Retinal Cell and Molecular Biology, NEI, National Institutes of Health, Bethesda, MD 20892, USA.
J Biol Chem. 2012 Aug 31;287(36):30552-9. doi: 10.1074/jbc.M112.364596. Epub 2012 Jun 28.
Previously, we showed that mutating RPE65 residue Phe-103 preferentially produces 13-cis-retinol instead of 11-cis-retinol, supporting a carbocation/radical cation mechanism of retinol isomerization. We asked whether this modulation of specificity can occur with residues other than Phe-103 and what role it plays in substrate binding and isomerization. We modeled the substrate-binding cleft of RPE65 to identify residues lining its surface. Many are phenylalanines and tyrosines, including three Phe residues (Phe-61, Phe-312, and Phe-526) forming an arch-like arrangement astride the cleft and Tyr-338. Also, Phe-418 sits at the neck of the cleft, lending a bend to the volume enclosed by the cleft. All mutations of Phe-61, Phe-312, and Phe-418 result in severely impaired or inactive enzyme. However, mutation of Phe-526 and Tyr-338, like Phe-103, decreases 11-cis-retinol formation, whereas increasing the 13-cis isomer. Significantly, 2 of these 3 residues, Phe-103 and Tyr-338, are located on putatively mobile interstrand loops. We propose that residual densities located in the binding cleft of the RPE65 structure represents a post-cleavage snapshot consistent not only with a fatty acid product, as originally modeled, but also an 11-cis-retinol product. Substrate docking simulations permit 11-cis- or 13-cis-retinyl ester binding in this relatively closed cleft, with the latter favored in F103L, F526A, and Y338A mutant structures, but prohibit binding of all-trans-retinyl ester, suggesting that isomerization occurs early in the temporal sequence, with O-alkyl ester cleavage occurring later. These findings provide insight into the mechanism of isomerization central to the visual cycle.
此前,我们表明突变 RPE65 残基 Phe-103 会优先产生 13-顺式视黄醇而不是 11-顺式视黄醇,这支持了视黄醇异构化的碳正离子/自由基阳离子机制。我们想知道这种特异性的调节是否可以发生在除 Phe-103 以外的残基上,以及它在底物结合和异构化中扮演什么角色。我们对 RPE65 的底物结合裂隙进行建模,以确定其表面的残基。许多是苯丙氨酸和酪氨酸,包括三个 Phe 残基(Phe-61、Phe-312 和 Phe-526)形成横跨裂隙的拱形排列和 Tyr-338。此外,Phe-418 位于裂隙的颈部,使裂隙所包含的体积发生弯曲。Phe-61、Phe-312 和 Phe-418 的所有突变都导致酶严重失活或无活性。然而,像 Phe-103 一样,Phe-526 和 Tyr-338 的突变会减少 11-顺式视黄醇的形成,而增加 13-顺式异构体。重要的是,这 3 个残基中有 2 个,Phe-103 和 Tyr-338,位于推测为可移动的链间环上。我们提出,位于 RPE65 结构结合裂隙中的剩余密度代表了一个裂解后的快照,不仅与最初建模的脂肪酸产物一致,而且与 11-顺式视黄醇产物一致。底物对接模拟允许 11-顺式或 13-顺式视黄醇酯在这个相对封闭的裂隙中结合,后者在 F103L、F526A 和 Y338A 突变体结构中更有利,但禁止全反式视黄醇酯结合,这表明异构化发生在时间序列的早期,而 O-烷基酯的裂解发生在后面。这些发现为视觉循环中关键的异构化机制提供了深入的了解。