Suppr超能文献

基于主成分分析的残差协方差矩阵多性状全基因组关联研究。

Multiple-trait genome-wide association study based on principal component analysis for residual covariance matrix.

作者信息

Gao H, Wu Y, Zhang T, Wu Y, Jiang L, Zhan J, Li J, Yang R

机构信息

Institute of Animal Sciences, Chinese Academy of Agricultural Science, Beijing, People's Republic of China.

Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA.

出版信息

Heredity (Edinb). 2014 Dec;113(6):526-32. doi: 10.1038/hdy.2014.57. Epub 2014 Jul 2.

Abstract

Given the drawbacks of implementing multivariate analysis for mapping multiple traits in genome-wide association study (GWAS), principal component analysis (PCA) has been widely used to generate independent 'super traits' from the original multivariate phenotypic traits for the univariate analysis. However, parameter estimates in this framework may not be the same as those from the joint analysis of all traits, leading to spurious linkage results. In this paper, we propose to perform the PCA for residual covariance matrix instead of the phenotypical covariance matrix, based on which multiple traits are transformed to a group of pseudo principal components. The PCA for residual covariance matrix allows analyzing each pseudo principal component separately. In addition, all parameter estimates are equivalent to those obtained from the joint multivariate analysis under a linear transformation. However, a fast least absolute shrinkage and selection operator (LASSO) for estimating the sparse oversaturated genetic model greatly reduces the computational costs of this procedure. Extensive simulations show statistical and computational efficiencies of the proposed method. We illustrate this method in a GWAS for 20 slaughtering traits and meat quality traits in beef cattle.

摘要

鉴于在全基因组关联研究(GWAS)中对多个性状进行映射时实施多变量分析存在缺点,主成分分析(PCA)已被广泛用于从原始多变量表型性状中生成独立的“超级性状”以进行单变量分析。然而,该框架中的参数估计可能与所有性状联合分析得到的参数估计不同,从而导致虚假的连锁结果。在本文中,我们建议对残差协方差矩阵而非表型协方差矩阵进行主成分分析,在此基础上,多个性状被转换为一组伪主成分。对残差协方差矩阵进行主成分分析允许分别分析每个伪主成分。此外,在线性变换下,所有参数估计都等同于从联合多变量分析中获得的参数估计。然而,用于估计稀疏过饱和遗传模型的快速最小绝对收缩和选择算子(LASSO)极大地降低了该过程的计算成本。大量模拟显示了所提方法的统计和计算效率。我们在一项针对肉牛20个屠宰性状和肉质性状的全基因组关联研究中阐述了该方法。

相似文献

1
Multiple-trait genome-wide association study based on principal component analysis for residual covariance matrix.
Heredity (Edinb). 2014 Dec;113(6):526-32. doi: 10.1038/hdy.2014.57. Epub 2014 Jul 2.
3
Genome-wide association mapping of milk production traits in Braunvieh cattle.
J Dairy Sci. 2012 Sep;95(9):5357-5364. doi: 10.3168/jds.2011-4673.
7
Maximizing the power of principal-component analysis of correlated phenotypes in genome-wide association studies.
Am J Hum Genet. 2014 May 1;94(5):662-76. doi: 10.1016/j.ajhg.2014.03.016. Epub 2014 Apr 17.
8
Genome scan for meat quality traits in Nelore beef cattle.
Physiol Genomics. 2013 Nov 1;45(21):1012-20. doi: 10.1152/physiolgenomics.00066.2013. Epub 2013 Sep 10.
9
A multi-trait, meta-analysis for detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle.
PLoS Genet. 2014 Mar 27;10(3):e1004198. doi: 10.1371/journal.pgen.1004198. eCollection 2014 Mar.

引用本文的文献

1
Effect of Soil Environment on Species Diversity of Desert Plant Communities.
Plants (Basel). 2023 Oct 2;12(19):3465. doi: 10.3390/plants12193465.
2
Understanding the metabolome and metagenome as extended phenotypes: The next frontier in macroalgae domestication and improvement.
J World Aquac Soc. 2021 Oct;52(5):1009-1030. doi: 10.1111/jwas.12782. Epub 2021 Mar 24.
3
Multi-trait multi-locus SEM model discriminates SNPs of different effects.
BMC Genomics. 2020 Jul 28;21(Suppl 8):490. doi: 10.1186/s12864-020-06833-2.
4
6
A quadratically regularized functional canonical correlation analysis for identifying the global structure of pleiotropy with NGS data.
PLoS Comput Biol. 2017 Oct 17;13(10):e1005788. doi: 10.1371/journal.pcbi.1005788. eCollection 2017 Oct.
8
Does 3D Phenotyping Yield Substantial Insights in the Genetics of the Mouse Mandible Shape?
G3 (Bethesda). 2016 May 3;6(5):1153-63. doi: 10.1534/g3.115.024372.

本文引用的文献

2
Moving toward System Genetics through Multiple Trait Analysis in Genome-Wide Association Studies.
Front Genet. 2012 Jan 16;3:1. doi: 10.3389/fgene.2012.00001. eCollection 2012.
3
Genome-wide association study reveals five nucleotide sequence variants for carcass traits in beef cattle.
Anim Genet. 2011 Aug;42(4):361-5. doi: 10.1111/j.1365-2052.2010.02156.x. Epub 2011 Feb 6.
4
A genome-wide association study of meat and carcass traits in Australian cattle.
J Anim Sci. 2011 Aug;89(8):2297-309. doi: 10.2527/jas.2010-3138. Epub 2011 Mar 18.
5
Genetics. Systems genetics.
Science. 2011 Feb 25;331(6020):1015-6. doi: 10.1126/science.1203869.
7
Multivariate analysis of a genome-wide association study in dairy cattle.
J Dairy Sci. 2010 Aug;93(8):3818-33. doi: 10.3168/jds.2009-2980.
8
Bivariate association analysis for quantitative traits using generalized estimation equation.
J Genet Genomics. 2009 Dec;36(12):733-43. doi: 10.1016/S1673-8527(08)60166-6.
9
Statistical estimation of correlated genome associations to a quantitative trait network.
PLoS Genet. 2009 Aug;5(8):e1000587. doi: 10.1371/journal.pgen.1000587. Epub 2009 Aug 14.
10
Why Do We Test Multiple Traits in Genetic Association Studies?
J Korean Stat Soc. 2009;38(1):1-10. doi: 10.1016/j.jkss.2008.10.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验