Suppr超能文献

将生态生理学建模与数量遗传学相结合,以支持标记辅助作物设计,提高水稻(Oryza sativa)在干旱胁迫下的产量。

Linking ecophysiological modelling with quantitative genetics to support marker-assisted crop design for improved yields of rice (Oryza sativa) under drought stress.

作者信息

Gu Junfei, Yin Xinyou, Zhang Chengwei, Wang Huaqi, Struik Paul C

机构信息

Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands.

Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands

出版信息

Ann Bot. 2014 Sep;114(3):499-511. doi: 10.1093/aob/mcu127. Epub 2014 Jul 1.

Abstract

BACKGROUND AND AIMS

Genetic markers can be used in combination with ecophysiological crop models to predict the performance of genotypes. Crop models can estimate the contribution of individual markers to crop performance in given environments. The objectives of this study were to explore the use of crop models to design markers and virtual ideotypes for improving yields of rice (Oryza sativa) under drought stress.

METHODS

Using the model GECROS, crop yield was dissected into seven easily measured parameters. Loci for these parameters were identified for a rice population of 94 introgression lines (ILs) derived from two parents differing in drought tolerance. Marker-based values of ILs for each of these parameters were estimated from additive allele effects of the loci, and were fed to the model in order to simulate yields of the ILs grown under well-watered and drought conditions and in order to design virtual ideotypes for those conditions.

KEY RESULTS

To account for genotypic yield differences, it was necessary to parameterize the model for differences in an additional trait 'total crop nitrogen uptake' (Nmax) among the ILs. Genetic variation in Nmax had the most significant effect on yield; five other parameters also significantly influenced yield, but seed weight and leaf photosynthesis did not. Using the marker-based parameter values, GECROS also simulated yield variation among 251 recombinant inbred lines of the same parents. The model-based dissection approach detected more markers than the analysis using only yield per se. Model-based sensitivity analysis ranked all markers for their importance in determining yield differences among the ILs. Virtual ideotypes based on markers identified by modelling had 10-36 % more yield than those based on markers for yield per se.

CONCLUSIONS

This study outlines a genotype-to-phenotype approach that exploits the potential value of marker-based crop modelling in developing new plant types with high yields. The approach can provide more markers for selection programmes for specific environments whilst also allowing for prioritization. Crop modelling is thus a powerful tool for marker design for improved rice yields and for ideotyping under contrasting conditions.

摘要

背景与目标

遗传标记可与作物生态生理模型结合使用,以预测基因型的表现。作物模型可以估计在特定环境中单个标记对作物表现的贡献。本研究的目的是探索利用作物模型来设计标记和虚拟理想型,以提高干旱胁迫下水稻(Oryza sativa)的产量。

方法

使用GECROS模型,将作物产量分解为七个易于测量的参数。针对由两个耐旱性不同的亲本衍生而来的94个渗入系(ILs)的水稻群体,确定了这些参数的基因座。根据基因座的加性等位基因效应估计每个参数的ILs基于标记的值,并将其输入模型,以模拟在充分灌溉和干旱条件下生长的ILs的产量,并为这些条件设计虚拟理想型。

关键结果

为了解释基因型产量差异,有必要针对ILs之间额外性状“作物总氮吸收量”(Nmax)的差异对模型进行参数化。Nmax的遗传变异对产量影响最为显著;其他五个参数也对产量有显著影响,但种子重量和叶片光合作用没有。使用基于标记的参数值,GECROS还模拟了同一亲本的251个重组自交系之间的产量变异。基于模型的剖析方法比仅使用产量本身的分析检测到更多标记。基于模型的敏感性分析对所有标记在确定ILs之间产量差异中的重要性进行了排序。基于建模确定的标记的虚拟理想型比基于产量本身的标记的虚拟理想型产量高10 - 36%。

结论

本研究概述了一种从基因型到表型的方法,该方法利用基于标记的作物建模在开发高产新植物类型方面的潜在价值。该方法可以为特定环境的选择计划提供更多标记,同时还能进行优先级排序。因此,作物建模是提高水稻产量的标记设计以及在不同条件下进行理想型设计的有力工具。

相似文献

2
Utilization of genetic diversity and marker-trait to improve drought tolerance in rice (Oryza sativa L.).
Mol Biol Rep. 2021 Jan;48(1):157-170. doi: 10.1007/s11033-020-06029-7. Epub 2020 Dec 10.
5
qDTY12.1: a locus with a consistent effect on grain yield under drought in rice.
BMC Genet. 2013 Feb 26;14:12. doi: 10.1186/1471-2156-14-12.
6
Association mapping of drought tolerance and agronomic traits in rice (Oryza sativa L.) landraces.
BMC Plant Biol. 2021 Oct 23;21(1):484. doi: 10.1186/s12870-021-03272-3.
8
Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.).
PLoS One. 2017 Mar 9;12(3):e0172515. doi: 10.1371/journal.pone.0172515. eCollection 2017.
9
Marker-assisted forward breeding to develop a drought-, bacterial-leaf-blight-, and blast-resistant rice cultivar.
Plant Genome. 2022 Mar;15(1):e20170. doi: 10.1002/tpg2.20170. Epub 2021 Nov 29.
10
Genetic Variation and Association Analysis of the SSR Markers Linked to the Major Drought-Yield QTLs of Rice.
Biochem Genet. 2018 Aug;56(4):356-374. doi: 10.1007/s10528-018-9849-6. Epub 2018 Feb 24.

引用本文的文献

3
Improving crop yield potential: Underlying biological processes and future prospects.
Food Energy Secur. 2022 Dec 2;12(1):e435. doi: 10.1002/fes3.435. eCollection 2023 Jan.
4
Integration of Crop Growth Models and Genomic Prediction.
Methods Mol Biol. 2022;2467:359-396. doi: 10.1007/978-1-0716-2205-6_13.
10
Bridging the genotype-phenotype gap in 3D.
J Exp Bot. 2016 Aug;67(15):4427-30. doi: 10.1093/jxb/erw264.

本文引用的文献

1
Putting mechanisms into crop production models.
Plant Cell Environ. 2013 Sep;36(9):1658-72. doi: 10.1111/pce.12119. Epub 2013 May 22.
5
Prediction of flowering time in Brassica oleracea using a quantitative trait loci-based phenology model.
Plant Biol (Stuttg). 2012 Jan;14(1):179-89. doi: 10.1111/j.1438-8677.2011.00478.x. Epub 2011 Jun 3.
6
The role of QTLs in the breeding of high-yielding rice.
Trends Plant Sci. 2011 Jun;16(6):319-26. doi: 10.1016/j.tplants.2011.02.009. Epub 2011 Mar 21.
7
Challenges in breeding for yield increase for drought.
Trends Plant Sci. 2011 Jun;16(6):289-93. doi: 10.1016/j.tplants.2011.02.008. Epub 2011 Mar 17.
9
Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance.
J Exp Bot. 2011 Jan;62(3):855-68. doi: 10.1093/jxb/erq329. Epub 2010 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验