1] Laboratory for Physical Sciences, College Park, Maryland 20740, USA [2] Department of Physics, University of Maryland, College Park, Maryland 20742, USA.
Laboratory for Physical Sciences, College Park, Maryland 20740, USA.
Nat Commun. 2014 Jul 2;5:4225. doi: 10.1038/ncomms5225.
Superconducting circuits are exceptionally flexible, enabling many different devices from sensors to quantum computers. Separately, epitaxial semiconductor devices such as spin qubits in silicon offer more limited device variation but extraordinary quantum properties for a solid-state system. It might be possible to merge the two approaches, making single-crystal superconducting devices out of a semiconductor by utilizing the latest atomistic fabrication techniques. Here we propose superconducting devices made from precision hole-doped regions within a silicon (or germanium) single crystal. We analyse the properties of this superconducting semiconductor and show that practical superconducting wires, Josephson tunnel junctions or weak links, superconducting quantum interference devices (SQUIDs) and qubits are feasible. This work motivates the pursuit of 'bottom-up' superconductivity for improved or fundamentally different technology and physics.
超导电路具有极高的灵活性,能够实现从传感器到量子计算机等多种不同的设备。另一方面,外延半导体设备,如硅中的自旋量子位,虽然设备变化有限,但对于固态系统来说具有非凡的量子特性。将这两种方法结合起来,利用最新的原子制造技术,从半导体中制造出单晶超导器件,或许是可行的。在这里,我们提出了一种由硅(或锗)单晶中的精确空穴掺杂区域制成的超导器件。我们分析了这种超导半导体的特性,并表明实用的超导线、约瑟夫森隧道结或弱连接、超导量子干涉器件(SQUID)和量子位是可行的。这项工作激发了人们对“自下而上”超导的追求,以实现改进或从根本上不同的技术和物理。