Lee Kan-Heng, Chakram Srivatsan, Kim Shi En, Mujid Fauzia, Ray Ariana, Gao Hui, Park Chibeom, Zhong Yu, Muller David A, Schuster David I, Park Jiwoong
School of Applied and Engineering Physics , Cornell University , Ithaca , New York 14853 , United States.
Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States.
Nano Lett. 2019 Nov 13;19(11):8287-8293. doi: 10.1021/acs.nanolett.9b03886. Epub 2019 Nov 1.
Quantum computing based on superconducting qubits requires the understanding and control of the materials, device architecture, and operation. However, the materials for the central circuit element, the Josephson junction, have mostly been focused on using the AlO tunnel barrier. Here, we demonstrate Josephson junctions and superconducting qubits employing two-dimensional materials as the tunnel barrier. We batch-fabricate and design the critical Josephson current of these devices via layer-by-layer stacking layers of MoS on the large scale. Based on such junctions, MoS transmon qubits are engineered and characterized in a bulk superconducting microwave resonator for the first time. Our work allows Josephson junctions to access the diverse material properties of two-dimensional materials that include a wide range of electrical and magnetic properties, which can be used to study the effects of different material properties in superconducting qubits and to engineer novel quantum circuit elements in the future.
基于超导量子比特的量子计算需要对材料、器件架构和操作有深入的理解与控制。然而,作为核心电路元件的约瑟夫森结所使用的材料大多集中在氧化铝隧道势垒上。在此,我们展示了采用二维材料作为隧道势垒的约瑟夫森结和超导量子比特。我们通过大规模逐层堆叠二硫化钼层来批量制造并设计这些器件的临界约瑟夫森电流。基于此类结,首次在体超导微波谐振器中设计并表征了二硫化钼跨导量子比特。我们的工作使得约瑟夫森结能够利用二维材料多样的材料特性,这些特性涵盖了广泛的电学和磁学性质,可用于研究超导量子比特中不同材料特性的影响,并在未来设计新型量子电路元件。