Kotte Oliver, Volkmer Benjamin, Radzikowski Jakub L, Heinemann Matthias
Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
Mol Syst Biol. 2014 Jul 1;10(7):736. doi: 10.15252/msb.20135022.
Fluctuations in intracellular molecule abundance can lead to distinct, coexisting phenotypes in isogenic populations. Although metabolism continuously adapts to unpredictable environmental changes, and although bistability was found in certain substrate-uptake pathways, central carbon metabolism is thought to operate deterministically. Here, we combine experiment and theory to demonstrate that a clonal Escherichia coli population splits into two stochastically generated phenotypic subpopulations after glucose-gluconeogenic substrate shifts. Most cells refrain from growth, entering a dormant persister state that manifests as a lag phase in the population growth curve. The subpopulation-generating mechanism resides at the metabolic core, overarches the metabolic and transcriptional networks, and only allows the growth of cells initially achieving sufficiently high gluconeogenic flux. Thus, central metabolism does not ensure the gluconeogenic growth of individual cells, but uses a population-level adaptation resulting in responsive diversification upon nutrient changes.
细胞内分子丰度的波动可导致同基因群体中出现不同的、共存的表型。尽管新陈代谢会不断适应不可预测的环境变化,并且尽管在某些底物摄取途径中发现了双稳态,但中心碳代谢被认为是确定性地运作。在这里,我们结合实验和理论证明,在葡萄糖 - 糖异生底物转变后,克隆的大肠杆菌群体分裂为两个随机产生的表型亚群。大多数细胞停止生长,进入休眠的持留状态,这在群体生长曲线中表现为延迟期。亚群产生机制位于代谢核心,跨越代谢和转录网络,并且只允许最初实现足够高糖异生通量的细胞生长。因此,中心代谢并不能确保单个细胞的糖异生生长,而是利用群体水平的适应性,在营养变化时导致响应性多样化。