Csonka C, Páli T, Bencsik P, Görbe A, Ferdinandy P, Csont T
Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary; Pharmahungary Group, Szeged, Hungary.
Br J Pharmacol. 2015 Mar;172(6):1620-32. doi: 10.1111/bph.12832. Epub 2014 Sep 5.
Although the physiological regulatory function of the gasotransmitter NO (a diatomic free radical) was discovered decades ago, NO is still in the frontline research in biomedicine. NO has been implicated in a variety of physiological and pathological processes; therefore, pharmacological modulation of NO levels in various tissues may have significant therapeutic value. NO is generated by NOS in most of cell types and by non-enzymatic reactions. Measurement of NO is technically difficult due to its rapid chemical reactions with a wide range of molecules, such as, for example, free radicals, metals, thiols, etc. Therefore, there are still several contradictory findings on the role of NO in different biological processes. In this review, we briefly discuss the major techniques suitable for measurement of NO (electron paramagnetic resonance, electrochemistry, fluorometry) and its derivatives in biological samples (nitrite/nitrate, NOS, cGMP, nitrosothiols) and discuss the advantages and disadvantages of each method. We conclude that to obtain a meaningful insight into the role of NO and NO modulator compounds in physiological or pathological processes, concomitant assessment of NO synthesis, NO content, as well as molecular targets and reaction products of NO is recommended.
尽管气体递质一氧化氮(一种双原子自由基)的生理调节功能在数十年前就已被发现,但一氧化氮仍处于生物医学前沿研究领域。一氧化氮参与了多种生理和病理过程;因此,对各种组织中一氧化氮水平进行药理学调节可能具有重大治疗价值。一氧化氮在大多数细胞类型中由一氧化氮合酶产生,也可通过非酶促反应生成。由于一氧化氮能与多种分子(如自由基、金属、硫醇等)快速发生化学反应,因此对其进行测量在技术上具有难度。所以,关于一氧化氮在不同生物过程中的作用仍存在一些相互矛盾的研究结果。在本综述中,我们简要讨论了适用于测量生物样品中一氧化氮(电子顺磁共振、电化学、荧光测定法)及其衍生物(亚硝酸盐/硝酸盐、一氧化氮合酶、环磷酸鸟苷、亚硝基硫醇)的主要技术,并探讨了每种方法的优缺点。我们得出结论,为了深入了解一氧化氮及一氧化氮调节剂化合物在生理或病理过程中的作用,建议同时评估一氧化氮的合成、一氧化氮含量以及一氧化氮的分子靶点和反应产物。